1,175 research outputs found
The in-medium isovector pi N amplitude from low energy pion scattering
Differential cross sections for elastic scattering of 21.5 MeV positive and
negative pions by Si, Ca, Ni and Zr have been measured as part of a study of
the pion-nucleus potential across threshold. The `anomalous' repulsion in the
s-wave term was observed, as is the case with pionic atoms. The extra repulsion
can be accounted for by a chiral-motivated model where the pion decay constant
is modified in the medium. Unlike in pionic atoms, the anomaly cannot be
removed by merely introducing an empirical on-shell energy dependence.Comment: 9 pages, 2 figures. Minor changes, to appear in PR
Multicriteria ranking using weights which minimize the score range
Various schemes have been proposed for generating a set of non-subjective weights when aggregating multiple criteria for the purposes of ranking or selecting alternatives. The maximin approach chooses the weights which maximise the lowest score (assuming there is an upper bound to scores). This is equivalent to finding the weights which minimize the maximum deviation, or range, between the worst and best scores (minimax). At first glance this seems to be an equitable way of apportioning weight, and the Rawlsian theory of justice has been cited in its support.We draw a distinction between using the maximin rule for the purpose of assessing performance, and using it for allocating resources amongst the alternatives. We demonstrate that it has a number of drawbacks which make it inappropriate for the assessment of performance. Specifically, it is tantamount to allowing the worst performers to decide the worth of the criteria so as to maximise their overall score. Furthermore, when making a selection from a list of alternatives, the final choice is highly sensitive to the removal or inclusion of alternatives whose performance is so poor that they are clearly irrelevant to the choice at hand
Elastic scattering of low energy pions by nuclei and the in-medium isovector pi N amplitude
Measurements of elastic scattering of 21.5 MeV pi+ and pi- by Si, Ca, Ni and
Zr were made using a single arm magnetic spectrometer. Absolute calibration was
made by parallel measurements of Coulomb scattering of muons. Parameters of a
pion-nucleus optical potential were obtained from fits to all eight angular
distributions put together. The `anomalous' s-wave repulsion known from pionic
atoms is clearly observed and could be removed by introducing a
chiral-motivated density dependence of the isovector scattering amplitude,
which also greatly improved the fits to the data. The empirical energy
dependence of the isoscalar amplitude also improves the fits to the data but,
contrary to what is found with pionic atoms, on its own is incapable of
removing the anomaly.Comment: 20 pages, 5 figures, 5 tables. V2 added details on
uncertainties,extended discussion. To appear in PR
Ambiguity and public good provision in large societies
ArticleIn this paper, we consider the effect of ambiguity on the private provision of public goods. Equilibrium is shown to exist and be unique. We examine how provision of the public good changes as the size of the population increases. We show that when there is uncertainty, there may be less free-riding in large societies
Activity-dependent heteromerization of the hyperpolarization-activated, cyclic-nucleotide gated (HCN) channels: role of N-linked glycosylation.
Formation of heteromeric complexes of ion channels via co-assembly of different subunit isoforms provides an important mechanism for enhanced channel diversity. We have previously demonstrated co-association of the hyperpolarization activated cyclic-nucleotide gated (HCN1/HCN2) channel isoforms that was regulated by network (seizure) activity in developing hippocampus. However, the mechanisms that underlie this augmented expression of heteromeric complexes have remained unknown. Glycosylation of the HCN channels has been implicated in the stabilization and membrane expression of heteromeric HCN1/HCN2 constructs in heterologous systems. Therefore, we used in vivo and in vitro systems to test the hypothesis that activity modifies HCN1/HCN2 heteromerization in neurons by modulating the glycosylation state of the channel molecules. Seizure-like activity (SA) increased HCN1/HCN2 heteromerization in hippocampus in vivo as well as in hippocampal organotypic slice cultures. This activity increased the abundance of glycosylated HCN1 but not HCN2-channel molecules. In addition, glycosylated HCN1 channels were preferentially co-immunoprecipitated with the HCN2 isoforms. Provoking SA in vitro in the presence of the N-linked glycosylation blocker tunicamycin abrogated the activity-dependent increase of HCN1/HCN2 heteromerization. Thus, hippocampal HCN1 molecules have a significantly higher probability of being glycosylated after SA, and this might promote a stable heteromerization with HCN2
The problem of shot selection in basketball
In basketball, every time the offense produces a shot opportunity the player
with the ball must decide whether the shot is worth taking. In this paper, I
explore the question of when a team should shoot and when they should pass up
the shot by considering a simple theoretical model of the shot selection
process, in which the quality of shot opportunities generated by the offense is
assumed to fall randomly within a uniform distribution. I derive an answer to
the question "how likely must the shot be to go in before the player should
take it?", and show that this "lower cutoff" for shot quality depends
crucially on the number of shot opportunities remaining (say, before the
shot clock expires), with larger demanding that only higher-quality shots
should be taken. The function is also derived in the presence of a
finite turnover rate and used to predict the shooting rate of an
optimal-shooting team as a function of time. This prediction is compared to
observed shooting rates from the National Basketball Association (NBA), and the
comparison suggests that NBA players tend to wait too long before shooting and
undervalue the probability of committing a turnover.Comment: 7 pages, 2 figures; comparison to NBA data adde
Adverse Selection in Private Annuity Markets and the Role of Mandatory Social Annuitization
We study the effects on the macroeconomic equilibrium, the wealth distribution, and welfare of adverse selection in private annuity markets in a closed economy inhabited by overlapping generations of heterogeneous agents who are distinguished by their health status. If an agent's health type is private information there will be a pooling equilibrium in the private annuity market. We also study the implications for the macro-economy and welfare of a social security system with mandatory contributions that are constant across health types. These social annuities are immune to adverse selection and therefore offer a higher rate of return than private annuities do. However, they have a negative effect on the steady-state capital intensity and welfare. The positive effect of a fair pooled rate of return on a fixed part of savings and a higher return on capital in equilibrium is outweighed by the negative consequences of increased adverse selection in the private annuity market and a lower wage rate
Runaway Events Dominate the Heavy Tail of Citation Distributions
Statistical distributions with heavy tails are ubiquitous in natural and
social phenomena. Since the entries in heavy tail have disproportional
significance, the knowledge of its exact shape is very important. Citations of
scientific papers form one of the best-known heavy tail distributions. Even in
this case there is a considerable debate whether citation distribution follows
the log-normal or power-law fit. The goal of our study is to solve this debate
by measuring citation distribution for a very large and homogeneous data. We
measured citation distribution for 418,438 Physics papers published in
1980-1989 and cited by 2008. While the log-normal fit deviates too strong from
the data, the discrete power-law function with the exponent does
better and fits 99.955% of the data. However, the extreme tail of the
distribution deviates upward even from the power-law fit and exhibits a
dramatic "runaway" behavior. The onset of the runaway regime is revealed
macroscopically as the paper garners 1000-1500 citations, however the
microscopic measurements of autocorrelation in citation rates are able to
predict this behavior in advance.Comment: 6 pages, 5 Figure
- …