23,772 research outputs found

    Inversion doublets of reflection-asymmetric clustering in 28Si and their isoscalar monopole and dipole transitions

    Get PDF
    [Background] Various cluster states of astrophysical interest are expected to exist in the excited states of 28Si^{28}{\rm Si}. However, they have not been identified firmly, because of the experimental and theoretical difficulties. [Purpose] To establish the 24^{24}Mg+α\alpha, 16^{16}O+12^{12}C and 20^{20}Ne+2α\alpha cluster bands, we theoretically search for the negative-parity cluster bands that are paired with the positive-parity bands to constitute the inversion doublets. We also offer the isoscalar monopole and dipole transitions as a promising probe for the clustering. We numerically show that these transition strengths from the ground state to the cluster states are very enhanced. [Method] The antisymmetrized molecular dynamics with Gogny D1S effective interaction is employed to calculate the excited states of 28Si^{28}{\rm Si}. The isoscalar monopole and dipole transition strengths are directly evaluated from wave functions of the ground and excited states. [Results] Negative-parity bands having 24^{24}Mg+α\alpha and 16^{16}O+12^{12}C cluster configurations are obtained in addition to the newly calculated 20^{20}Ne+2α\alpha cluster bands. All of them are paired with the corresponding positive-parity bands to constitute the inversion doublets with various cluster configurations. The calculation show that the band-head of the 24^{24}Mg+α\alpha and 20^{20}Ne+2α\alpha cluster bands are strongly excited by the isoscalar monopole and dipole transitions. [Conclusions] The present calculation suggests the existence of the inversion doublets with the 24^{24}Mg+α\alpha, 16^{16}O+12^{12}C and 20^{20}Ne+2α\alpha configurations.Because of the enhanced transition strengths, we offer the isoscalar monopole and dipole transitions as good probe for the 24^{24}Mg+α\alpha and 20^{20}Ne+2α\alpha cluster bands.Comment: 28 pages, 8 figure

    3alpha clustering in the excited states of 16C

    Get PDF
    The alpha cluster states of 16C are investigated by using the antisymmetrized molecular dynamics. It is shown that two different types of alpha cluster states exist: triangular and linear-chain states. The former has an approximate isosceles triangular configuration of alpha particles surrounded by four valence neutrons occupying sd-shell, while the latter has the linearly aligned alpha particles with two sd-shell neutrons and two pf-shell neutrons. It is found that the structure of the linear-chain state is qualitatively understood in terms of the 3/2 pi- and 1/2 sigma- molecular orbit as predicted by molecular-orbital model, but there exists non-negligible Be+alpha+2n correlation. The band-head energies of the triangular and linear-chain rotational bands are 8.0 and 15.5 MeV, and the latter is close to the He+Be threshold energy. It is also shown that the linear-chain state becomes the yrast sstate at J=10 with excitation energy 27.8 MeV owing to its very large moment-of-inertia comparable with hyperdeformation.Comment: 7 pages, 5 figure

    Anisotropic Electronic Structure of the Kondo Semiconductor CeFe2Al10 Studied by Optical Conductivity

    Full text link
    We report temperature-dependent polarized optical conductivity [σ(ω)\sigma(\omega)] spectra of CeFe2_2Al10_{10}, which is a reference material for CeRu2_2Al10_{10} and CeOs2_2Al10_{10} with an anomalous magnetic transition at 28 K. The σ(ω)\sigma(\omega) spectrum along the b-axis differs greatly from that in the acac-plane, indicating that this material has an anisotropic electronic structure. At low temperatures, in all axes, a shoulder structure due to the optical transition across the hybridization gap between the conduction band and the localized 4f4f states, namely cc-ff hybridization, appears at 55 meV. However, the gap opening temperature and the temperature of appearance of the quasiparticle Drude weight are strongly anisotropic indicating the anisotropic Kondo temperature. The strong anisotropic nature in both electronic structure and Kondo temperature is considered to be relevant the anomalous magnetic phase transition in CeRu2_2Al10_{10} and CeOs2_2Al10_{10}.Comment: 5 pages, 4 figure

    Antisymmetrized molecular dynamics studies for exotic clustering phenomena in neutron-rich nuclei

    Full text link
    We present a review of recent works on clustering phenomena in unstable nuclei studied by antisymmetrized molecular dynamics (AMD). The AMD studies in these decades have uncovered novel types of clustering phenomena brought about by the excess neutrons. Among them, this review focuses on the molecule-like structure of unstable nuclei. One of the earliest discussions on the clustering in unstable nuclei was made for neutron-rich Be and B isotopes. AMD calculations predicted that the ground state clustering is enhanced or reduced depending on the number of excess neutrons. Today, the experiments are confirming this prediction as the change of the proton radii. Behind this enhancement and reduction of the clustering, there are underlying shell effects called molecular- and atomic-orbits. These orbits form covalent and ionic bonding of the clusters analogous to the atomic molecules. It was found that this "molecular-orbit picture" reasonably explains the low-lying spectra of Be isotopes. The molecular-orbit picture is extended to other systems having parity asymmetric cluster cores and to the three cluster systems. O and Ne isotopes are the candidates of the former, while the 3α3\alpha linear chains in C isotopes are the latter. For both subjects, many intensive studies are now in progress. We also pay a special attention to the observables which are the fingerprint of the clustering. In particular, we focus on the monopole and dipole transitions which are recently regarded as good probe for the clustering. We discuss how they have and will reveal the exotic clustering.Comment: 96 pages, 44 figure

    Dipole resonances in light neutron-rich nuclei studied with time-dependent calculations of antisymmetrized molecular dynamics

    Get PDF
    In order to study isovector dipole response of neutron-rich nuclei, we have applied a time-dependent method of antisymmetrized molecular dynamics. The dipole resonances in Be, B and C isotopes have been investigated. In 10^{10}Be, 15^{15}B, 16^{16}C, collective modes of the vibration between a core and valence neutrons cause soft resonances at the excitation energy Ex=1015E_x=10-15 MeV below the giant dipole resonance(GDR). In 16^{16}C, we found that a remarkable peak at Ex=14E_x=14 MeV corresponds to coherent motion of four valence neutrons against a 12^{12}C core, while the GDR arises from the core vibration in the Ex>20E_x >20 MeV region. In 17^{17}B and 18^{18}C, the dipole strengths in the low energy region decline compared with those in 15^{15}B and 16^{16}C. We also discuss the energy weighted sum rule for the E1E1 transitions.Comment: 12 figures, submitted to Phys. Rev.

    Superdeformation and clustering in 40^{40}Ca studied with Antisymmetrized Molecular Dynamics

    Get PDF
    Deformed states in 40^{40}Ca are investigated with a method of antisymmetrized molecular dynamics. Above the spherical ground state, rotational bands arise from a normal deformation and a superdeformation as well as an oblate deformation. The calculated energy spectra and E2E2 transition strengths in the superdeformed band reasonably agree to the experimental data of the superdeformed band starting from the 03+0^+_3 state at 5.213 MeV. By the analysis of single-particle orbits, it is found that the superdeformed state has particle-hole nature of an 8p8p-8h8h configuration. One of new findings is parity asymmetric structure with 12^{12}C+28^{28}Si-like clustering in the superdeformed band. We predict that 12^{12}C+28^{28}Si molecular bands may be built above the superdeformed band due to the excitation of inter-cluster motion. They are considered to be higher nodal states of the superdeformed state. We also suggest negative-parity bands caused by the parity asymmetric deformation.Comment: 13 figures, submitted to Phys. Rev.

    Infrared spectroscopy under multi-extreme conditions: Direct observation of pseudo gap formation and collapse in CeSb

    Full text link
    Infrared reflectivity measurements of CeSb under multi-extreme conditions (low temperatures, high pressures and high magnetic fields) were performed. A pseudo gap structure, which originates from the magnetic band folding effect, responsible for the large enhancement in the electrical resistivity in the single-layered antiferromagnetic structure (AF-1 phase) was found at a pressure of 4 GPa and at temperatures of 35 - 50 K. The optical spectrum of the pseudo gap changes to that of a metallic structure with increasing magnetic field strength and increasing temperature. This change is the result of the magnetic phase transition from the AF-1 phase to other phases as a function of the magnetic field strength and temperature. This result is the first optical observation of the formation and collapse of a pseudo gap under multi-extreme conditions.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev.
    corecore