research

Dipole resonances in light neutron-rich nuclei studied with time-dependent calculations of antisymmetrized molecular dynamics

Abstract

In order to study isovector dipole response of neutron-rich nuclei, we have applied a time-dependent method of antisymmetrized molecular dynamics. The dipole resonances in Be, B and C isotopes have been investigated. In 10^{10}Be, 15^{15}B, 16^{16}C, collective modes of the vibration between a core and valence neutrons cause soft resonances at the excitation energy Ex=1015E_x=10-15 MeV below the giant dipole resonance(GDR). In 16^{16}C, we found that a remarkable peak at Ex=14E_x=14 MeV corresponds to coherent motion of four valence neutrons against a 12^{12}C core, while the GDR arises from the core vibration in the Ex>20E_x >20 MeV region. In 17^{17}B and 18^{18}C, the dipole strengths in the low energy region decline compared with those in 15^{15}B and 16^{16}C. We also discuss the energy weighted sum rule for the E1E1 transitions.Comment: 12 figures, submitted to Phys. Rev.

    Similar works