180 research outputs found

    Observation of the triplet metastable dtate of shallow donor pairs in AlN crystals with a negative-U behavior: A high-frequency EPR and ENDOR study

    Get PDF
    Theoretical predictions about the n-type conductivity in nitride semiconductors are discussed in the light of results of a high-frequency EPR an ENDOR study. It is shown that two types of effective-mass-like, shallow donors with a delocalized wave function exist in unintentionally doped AlN. The experiments demonstrate how the transformation from a shallow donor to a deep (DX) center takes place and how the deep DX center can be reconverted into a shallow donor forming a spin triplet and singlet states. © 2008 The American Physical Society

    A facile and green route to terpene derived acrylate and methacrylate monomers and simple free radical polymerisation to yield new renewable polymers and coatings

    Get PDF
    We present new acrylic monomers derived directly from abundant naturally available terpenes via a facile, green and catalytic approach. These monomers can be polymerised to create new polymers with a wide range of mechanical properties that positions them ideally for application across the commodity and specialty plastics landscape; from packaging, cosmetic and medical, through to composites and coatings. We demonstrate their utility through formation of novel renewable polymer coatings

    Reprogramming the assembly of unmodified DNA with a small molecule

    Get PDF
    The ability of DNA to store and encode information arises from base pairing of the four-letter nucleobase code to form a double helix. Expanding this DNA ‘alphabet’ by synthetic incorporation of new bases can introduce new functionalities and enable the formation of novel nucleic acid structures. However, reprogramming the self-assembly of existing nucleobases presents an alternative route to expand the structural space and functionality of nucleic acids. Here we report the discovery that a small molecule, cyanuric acid, with three thymine-like faces reprogrammes the assembly of unmodified poly(adenine) (poly(A)) into stable, long and abundant fibres with a unique internal structure. Poly(A) DNA, RNA and peptide nucleic acid all form these assemblies. Our studies are consistent with the association of adenine and cyanuric acid units into a hexameric rosette, which brings together poly(A) triplexes with a subsequent cooperative polymerization. Fundamentally, this study shows that small hydrogen-bonding molecules can be used to induce the assembly of nucleic acids in water, which leads to new structures from inexpensive and readily available materials

    Stereoregular Polymerization of Acyclic Terpenes

    No full text
    The growing environmental pollution and the expected depleting of fossil resources have sparked interest in recent years for polymers obtained from monomers originating from renewable sources. Furthermore, nature can provide a variety of building blocks with special structural features (e. g. side groups or stereo-elements) that cannot be obtained so easily via fossil-based pathways. In this context, terpenes are widespread natural compounds coming from non-food crops, present in a large variety of structures, and ready to use as monomers with or without further modifications. The present review aims to provide an overview of how chemists can stereospecifically polymerize terpenes, particularly the acyclic ones like myrcene, ocimene, and farnesene, using different metal catalyst systems in coordination-insertion polymerization. Attention is also paid to their copolymers, which have recently been disclosed, and to the possible applications of these bio-based materials in various industrial sectors such as in the field of elastomers. © 2021 The Authors. ChemPlusChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes

    A quantitative analysis of nuclear factor I/DNA interactions.

    No full text
    Nuclear factor I (NFI) was purified to homogeneity from porcine liver by DNA-affinity chromatography and displays a single band with a molecular weight of 36 kDa in SDS-polyacrylamide gels. The purified protein was used to determine absolute equilibrium binding constants by gel retardation techniques for a variety of DNA fragments with genuine or mutated NFI binding sites and a number of DNA fragments derived from various eukaryotic promoters carrying the CCAAT-box as a half-site for NFI binding. We present a model which allows prediction of the functional significance of mutated NFI binding-sites from sequence data. The data suggest that the single molecular species of NFI from porcine liver may not be able to recognize and activate the -CCAAT- promoter element in vivo without additional interactions, e.g. with other proteins

    Sustainable myrcene‐based elastomers via a convenient anionic polymerization

    No full text
    Soluble heterocomplexes consisting of sodium hydride in combination with trialkylalu-minum derivatives have been used as anionic initiating systems at 100 °C in toluene for convenient homo‐, co‐ and ter‐polymerization of myrcene with styrene and isoprene. In this way it has been possible to obtain elastomeric materials in a wide range of compositions with interesting thermal profiles and different polymeric architectures by simply modulating the alimentation feed and the (monomers)/(initiator systems) ratio. Especially, a complete study of the myrcene‐styrene copoly-mers (PMS) was carried out, highlighting their tapered microstructures with high molecular weights (up to 159.8 KDa) and a single glass transition temperature. For PMS copolymer reactivity ratios, rmyr = 0.12 ± 0.003 and rsty = 3.18 ± 0.65 and rmyr = 0.10 ± 0.004 and rsty = 3.32 ± 0.68 were deter-mined according to the Kelen–Tudos (KT) and extended Kelen–Tudos (exKT) methods, respec-tively. Finally, this study showed an easy accessible approach for the production of various elasto-mers by anionic copolymerization of renewable terpenes, such as myrcene, with commodities

    Hydroxyl radical footprints reveal novel structural features around the NF I binding site in adenovirus DNA.

    No full text
    We have identified a number of as yet unknown structural abnormalities of the NF I-DNA binding site within the inverted terminal repetition of adenovirus DNA by probing it with a hydroxyl radical footprinting technique. NF I binding alters the accessibility of the deoxyribose moieties to hydroxyl radicals both at the 3' and at the 5' side of the recognition sequence 5'-TGG(N)6GCCAA-3'. A smooth bend at the 5' side of the binding sequence is already present in naked linear DNA and it is further enhanced by protein binding. This could be demonstrated not only by hydroxyl radical footprinting but also by studying the temperature dependent mobility during gel electrophoresis of DNA fragments carrying the NF I binding site at circularly permutated positions. We propose that the bent conformation at this site is responsible for facilitating protein/DNA interactions
    • 

    corecore