285 research outputs found

    Long-term Observations of Three Nulling Pulsars

    Full text link
    We present an analysis of approximately 200 hours of observations of the pulsars J1634−-5107, J1717−-4054 and J1853++0505, taken over the course of 14.7 yr. We show that all of these objects exhibit long term nulls and radio-emitting phases (i.e. minutes to many hours), as well as considerable nulling fractions (NFs) in the range ∼67 %−90 %\sim67\,\% - 90\,\%. PSR J1717−-4054 is also found to exhibit short timescale nulls (1−40 P1 - 40~P) and burst phases (≲200 P\lesssim 200~P) during its radio-emitting phases. This behaviour acts to modulate the NF, and therefore the detection rate of the source, over timescales of minutes. Furthermore, PSR J1853++0505 is shown to exhibit a weak emission state, in addition to its strong and null states, after sufficient pulse integration. This further indicates that nulls may often only represent transitions to weaker emission states which are below the sensitivity thresholds of particular observing systems. In addition, we detected a peak-to-peak variation of 33±1 %33\pm1\,\% in the spin-down rate of PSR J1717−-4054, over timescales of hundreds of days. However, no long-term correlation with emission variation was found.Comment: 10 pages, 8 figures, accepted for publication in MNRA

    On the Apparent Nulls and Extreme Variability of PSR J1107-5907

    Full text link
    We present an analysis of the emission behaviour of PSR J1107-5907, a source known to exhibit separate modes of emission, using observations obtained over approximately 10 yr. We find that the object exhibits two distinct modes of emission; a strong mode with a broad profile and a weak mode with a narrow profile. During the strong mode of emission, the pulsar typically radiates very energetic emission over sequences of ~200-6000 pulses (~60 s-24 min), with apparent nulls over time-scales of up to a few pulses at a time. Emission during the weak mode is observed outside of these strong-mode sequences and manifests as occasional bursts of up to a few clearly detectable pulses at a time, as well as low-level underlying emission which is only detected through profile integration. This implies that the previously described null mode may in fact be representative of the bottom-end of the pulse intensity distribution for the source. This is supported by the dramatic pulse-to-pulse intensity modulation and rarity of exceptionally bright pulses observed during both modes of emission. Coupled with the fact that the source could be interpreted as a rotating radio transient (RRAT)-like object for the vast majority of the time, if placed at a further distance, we advance that this object likely represents a bridge between RRATs and extreme moding pulsars. Further to these emission properties, we also show that the source is consistent with being a near-aligned rotator and that it does not exhibit any measurable spin-down rate variation. These results suggest that nulls observed in other intermittent objects may in fact be representative of very weak emission without the need for complete cessation. As such, we argue that longer (> 1 h) observations of pulsars are required to discern their true modulation properties.Comment: 15 pages, 10 figures, accepted for publication in MNRA

    The Millisecond Radio Sky: Transients from a Blind Single Pulse Search

    Full text link
    We present the results of a search for transient radio bursts of between 0.125 and 32 millisecond duration in two archival pulsar surveys of intermediate galactic latitudes with the Parkes multibeam receiver. Fourteen new neutron stars have been discovered, seven of which belong to the recently identified "rotating radio transients" (RRATs) class. Here we describe our search methodology, and discuss the new detections in terms of how the RRAT population relates to the general population of pulsars. The new detections indicate (1) that the galactic z-distribution of RRATs in the surveys closely resembles the distribution of pulsars, with objects up to 0.86 kpc from the galactic plane; (2) where measurable, the RRAT pulse widths are similar to that of individual pulses from pulsars of similar period, implying a similar beaming fraction; and (3) our new detections span a variety of nulling fractions, and thus we postulate that the RRATs may simply be nulling pulsars that are only "on" for less than a pulse period. Finally, the newly discovered object PSR J0941-39 may represent a link between pulsars and RRATs. This bizarre object was discovered as an RRAT, but in follow-up observations often appeared as a bright (~10 mJy) pulsar with a low nulling fraction. It is obvious therefore that a neutron star can oscillate between being an RRAT and a pulsar. Crucially, the sites of the RRAT pulses are coincident with the pulsar's emission, implying that the two emission mechanisms are linked, and that RRATs are not just pulsars observed from different orientations.Comment: 13 pages, 9 figures, accepted by MNRA

    Long-term Radio Observations of the Intermittent Pulsar B1931+24

    Full text link
    We present an analysis of approximately 13-yr of observations of the intermittent pulsar B1931+24 to further elucidate its behaviour. We find that while the source exhibits a wide range of nulling (~4-39 d) and radio-emitting (~1-19 d) timescales, it cycles between its different emission phases over an average timescale of approximately 38 d, which is remarkably stable over many years. On average, the neutron star is found to be radio emitting for 26 +- 6 % of the time. No evidence is obtained to suggest that the pulsar undergoes any systematic, intrinsic variations in pulse intensity during the radio-emitting phases. In addition, we find no evidence for any correlation between the length of consecutive emission phases. An analysis of the rotational behaviour of the source shows that it consistently assumes the same spin-down rates, i.e. nudot = -16 +- 1 x 10^-15 s^-2 when emitting and nudot = -10.8 +- 0.4 x 10^-15 s^-2 when not emitting, over the entire observation span. Coupled with the stable switching timescale, this implies that the pulsar retains a high degree of magnetospheric memory, and stability, in spite of comparatively rapid (~ms) dynamical plasma timescales. While this provides further evidence to suggest that the behaviour of the neutron star is governed by magnetospheric-state switching, the underlying trigger mechanism remains illusive. This should be elucidated by future surveys with next generation telescopes such as LOFAR, MeerKAT and the SKA, which should detect similar sources and provide more clues to how their radio emission is regulated.Comment: 12 pages, 12 figures, accepted for publication in MNRA

    A transient component in the pulse profile of PSR J0738-4042

    Full text link
    One of the tenets of the radio pulsar observational picture is that the integrated pulse profiles are constant with time. This assumption underpins much of the fantastic science made possible via pulsar timing. Over the past few years, however, this assumption has come under question with a number of pulsars showing pulse shape changes on a range of timescales. Here, we show the dramatic appearance of a bright component in the pulse profile of PSR J0738-4042 (B0736-40). The component arises on the leading edge of the profile. It was not present in 2004 but strongly present in 2006 and all observations thereafter. A subsequent search through the literature shows the additional component varies in flux density over timescales of decades. We show that the polarization properties of the transient component are consistent with the picture of competing orthogonal polarization modes. Faced with the general problem of identifying and characterising average profile changes, we outline and apply a statistical technique based on a Hidden Markov Model. The value of this technique is established through simulations, and is shown to work successfully in the case of low signal-to-noise profiles.Comment: Accepted for publication in MNRA

    Pulsar Timing with the Parkes Radio Telescope for the Fermi Mission

    Full text link
    We report here on two years of timing of 168 pulsars using the Parkes radio telescope. The vast majority of these pulsars have spin-down luminosities in excess of 10^34 erg/s and are prime target candidates to be detected in gamma-rays by the Fermi Gamma-Ray Space Telescope. We provide the ephemerides for the ten pulsars being timed at Parkes which have been detected by Fermi in its first year of operation. These ephemerides, in conjunction with the publicly available photon list, can be used to generate gamma-ray profiles from the Fermi archive. We will make the ephemerides of any pulsars of interest available to the community upon request. In addition to the timing ephemerides, we present the parameters for 14 glitches which have occurred in 13 pulsars, seven of which have no previously known glitch history. The Parkes timing programme, in conjunction with Fermi observations, is expected to continue for at least the next four years.Comment: Accepted for publication in PASA.12 page
    • …
    corecore