724 research outputs found

    Meson bound states in multiflavour massive Schwinger model

    Get PDF
    The problem of meson bound states with NfN_f massive fermions in two dimensional quantum electrodynamics is discussed. We speculate about the spectrum of the lightest particles by means of the effective semiclassical description. In particular, the systems of fundamental fermions with SU(2)SU(2) and SU(3)SU(3) flavour symmetries broken by massive terms are investigated.Comment: 16 page

    Exact closed form analytical solutions for vibrating cavities

    Full text link
    For one-dimensional vibrating cavity systems appearing in the standard illustration of the dynamical Casimir effect, we propose an approach to the construction of exact closed-form solutions. As new results, we obtain solutions that are given for arbitrary frequencies, amplitudes and time regions. In a broad range of parameters, a vibrating cavity model exhibits the general property of exponential instability. Marginal behavior of the system manifests in a power-like growth of radiated energy.Comment: 17 pages, 7 figure

    Open strings with topologically inspired boundary conditions

    Full text link
    We consider an open string described by an action of the Dirac-Nambu-Goto type with topological corrections which affect the boundary conditions but not the equations of motion. The most general addition of this kind is a sum of the Gauss-Bonnet action and the first Chern number (when the background spacetime dimension is four) of the normal bundle to the string worldsheet. We examine the modification introduced by such terms in the boundary conditions at the ends of the string.Comment: 12 pages, late

    Total knee arthroplasty improves the quality-adjusted life years in patients who exceeded their estimated life expectancy.

    Get PDF
    Total knee arthroplasty (TKA) is the treatment of choice for end-stage osteoarthritis though its risk-benefit ratio in elderly patients remains debated. This study aimed to evaluate the functional outcome, rates of complication and mortality, and quality-adjusted life years (QALY) in patients who exceeded their estimated life expectancy. Ninety-seven TKA implanted in 86 patients who exceeded their estimated life expectancy at the time of TKA were prospectively included in our institutional joint registry and retrospectively analyzed. At latest follow-up, the functional outcome with the Knee Society Score (KSS), rates of complication and mortality, and QALY with utility value of EuroQol-5D score were evaluated. At a mean follow-up of three ± one years, the pre- to post-operative KSS improved significantly (p < 0.01). The rates of surgical and major medical complications related to TKA were 3% and 10%, respectively. The re-operation rate with readmission was 3% while no TKA was revised. The 30-day and one year mortality was 1% and 3%, respectively. The pre- to one year post-operative QALY improved significantly (p < 0.01). The cumulative QALY five years after TKA was four years. Assuming that these patients did not undergo TKA, their cumulative QALY at five years would have been only two years. TKA is an effective procedure for the treatment of end-stage osteoarthritis in patients who exceeded their estimated life expectancy. TKA provided significant improvement in function and quality of life without adversely affecting overall morbidity and mortality. Therefore, TKA should not be contra-indicated in elderly patients based on their advanced age alone

    Polyethylene wear of dual mobility cups: a comparative analysis based on patient-specific finite element modeling.

    Get PDF
    Concerns remain about potential increased wear with dual mobility cups related to the multiple articulations involved in this specific design of implant. This finite element analysis study aimed to compare polyethylene (PE) wear between dual mobility cup and conventional acetabular component, and between the use of conventional ultra-high molecular weight PE (UHMWPE) and highly cross-linked PE (XPLE). Patient-specific finite element modeling was developed for 15 patients undergoing primary total hip arthroplasty (THA). Five acetabular components were 3D modeled and compared in THA constructs replicating existing implants: a dual mobility cup with a 22.2-mm-diameter femoral head against UHMWPE or XLPE (DM22PE or DM22XL), a conventional cup with a 22.2-mm-diameter femoral head against UHMWPE (SD22PE) and a conventional cup with a 32-mm-diameter femoral head against UHMWPE or XLPE (SD32PE or SD32XL). DM22PE produced 4.6 times and 5.1 times more volumetric wear than SD32XL and DM22XL (p < 0.0001, Cohen's d = 6.97 and 7.11; respectively). However, even if significant, the differences in volumetric wear between DM22XL and SD32XL as well as between DM22PE and SD22PE or SD32PE were small according to their effect size (p < 0.0001, Cohen's |d|= 0.48 to 0.65) and could be therefore considered as clinically negligible. When using XLPE instead of UHMWPE, dual mobility cup with a 22.2-mm-diameter femoral head produced a similar amount of volumetric wear than conventional acetabular component with a 32-mm-diameter femoral head against XLPE. Therefore, XLPE is advocated in dual mobility cup to improve its wear performance

    Bioinformatic analyses of mammalian 5'-UTR sequence properties of mRNAs predicts alternative translation initiation sites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Utilization of alternative initiation sites for protein translation directed by non-AUG codons in mammalian mRNAs is observed with increasing frequency. Alternative initiation sites are utilized for the synthesis of important regulatory proteins that control distinct biological functions. It is, therefore, of high significance to define the parameters that allow accurate bioinformatic prediction of alternative translation initiation sites (aTIS). This study has investigated 5'-UTR regions of mRNAs to define consensus sequence properties and structural features that allow identification of alternative initiation sites for protein translation.</p> <p>Results</p> <p>Bioinformatic evaluation of 5'-UTR sequences of mammalian mRNAs was conducted for classification and identification of alternative translation initiation sites for a group of mRNA sequences that have been experimentally demonstrated to utilize alternative non-AUG initiation sites for protein translation. These are represented by the codons CUG, GUG, UUG, AUA, and ACG for aTIS. The first phase of this bioinformatic analysis implements a classification tree that evaluated 5'-UTRs for unique consensus sequence features near the initiation codon, characteristics of 5'-UTR nucleotide sequences, and secondary structural features in a decision tree that categorizes mRNAs into those with potential aTIS, and those without. The second phase addresses identification of the aTIS codon and its location. Critical parameters of 5'-UTRs were assessed by an Artificial Neural Network (ANN) for identification of the aTIS codon and its location. ANNs have previously been used for the purpose of AUG start site prediction and are applicable in complex. ANN analyses demonstrated that multiple properties were required for predicting aTIS codons; these properties included unique consensus nucleotide sequences at positions -7 and -6 combined with positions -3 and +4, 5'-UTR length, ORF length, predicted secondary structures, free energy features, upstream AUGs, and G/C ratio. Importantly, combined results of the classification tree and the ANN analyses provided highly accurate bioinformatic predictions of alternative translation initiation sites.</p> <p>Conclusion</p> <p>This study has defined the unique properties of 5'-UTR sequences of mRNAs for successful bioinformatic prediction of alternative initiation sites utilized in protein translation. The ability to define aTIS through the described bioinformatic analyses can be of high importance for genomic analyses to provide full predictions of translated mammalian and human gene products required for cellular functions in health and disease.</p

    Dynamical Casimir Effect for a Swinging Cavity

    Full text link
    The resonant scalar particle generation for a swinging cavity resonator in the Casimir vacuum is examined. It is shown that the number of particles grows exponentially when the cavity rotates at some specific external frequency.Comment: to appear in J. Phys. A: Math. Theo

    Numerical approach to the dynamical Casimir effect

    Full text link
    The dynamical Casimir effect for a massless scalar field in 1+1-dimensions is studied numerically by solving a system of coupled first-order differential equations. The number of scalar particles created from vacuum is given by the solutions to this system which can be found by means of standard numerics. The formalism already used in a former work is derived in detail and is applied to resonant as well as off-resonant cavity oscillations.Comment: 15 pages, 4 figures, accepted for publication in J. Phys. A (special issue: Proceedings of QFEXT05, Barcelona, Sept. 5-9, 2005
    corecore