1,180 research outputs found

    High-Velocity Estimates and Inverse Scattering for Quantum N-Body Systems with Stark Effect

    Full text link
    In an N-body quantum system with a constant electric field, by inverse scattering, we uniquely reconstruct pair potentials, belonging to the optimal class of short-range potentials and long-range potentials, from the high-velocity limit of the Dollard scattering operator. We give a reconstruction formula with an error term.Comment: In this published version we have added remarks and we have edited the pape

    Dispersive estimates for Schrodinger operators in dimensions one and three

    Full text link
    We prove L^1 --> L^\infty estimates for linear Schroedinger equations in dimensions one and three. The potentials are only required to satisfy some mild decay assumptions. No regularity on the potentials is assumed.Comment: 20 pages. Corrected typos and improved explanatory remarks at the en

    L^p boundedness of the wave operator for the one dimensional Schroedinger operator

    Full text link
    Given a one dimensional perturbed Schroedinger operator H=-(d/dx)^2+V(x) we consider the associated wave operators W_+, W_- defined as the strong L^2 limits as s-> \pm\infty of the operators e^{isH} e^{-isH_0} We prove that the wave operators are bounded operators on L^p for all 1<p<\infty, provided (1+|x|)^2 V(x) is integrable, or else (1+|x|)V(x) is integrable and 0 is not a resonance. For p=\infty we obtain an estimate in terms of the Hilbert transform. Some applications to dispersive estimates for equations with variable rough coefficients are given.Comment: 26 page

    A rigorous analysis of high order electromagnetic invisibility cloaks

    Full text link
    There is currently a great deal of interest in the invisibility cloaks recently proposed by Pendry et al. that are based in the transformation approach. They obtained their results using first order transformations. In recent papers Hendi et al. and Cai et al. considered invisibility cloaks with high order transformations. In this paper we study high order electromagnetic invisibility cloaks in transformation media obtained by high order transformations from general anisotropic media. We consider the case where there is a finite number of spherical cloaks located in different points in space. We prove that for any incident plane wave, at any frequency, the scattered wave is identically zero. We also consider the scattering of finite energy wave packets. We prove that the scattering matrix is the identity, i.e., that for any incoming wave packet the outgoing wave packet is the same as the incoming one. This proves that the invisibility cloaks can not be detected in any scattering experiment with electromagnetic waves in high order transformation media, and in particular in the first order transformation media of Pendry et al. We also prove that the high order invisibility cloaks, as well as the first order ones, cloak passive and active devices. The cloaked objects completely decouple from the exterior. Actually, the cloaking outside is independent of what is inside the cloaked objects. The electromagnetic waves inside the cloaked objects can not leave the concealed regions and viceversa, the electromagnetic waves outside the cloaked objects can not go inside the concealed regions. As we prove our results for media that are obtained by transformation from general anisotropic materials, we prove that it is possible to cloak objects inside general crystals.Comment: The final version is now published in Journal of Physics A: Mathematical and Theoretical, vol 41 (2008) 065207 (21 pp). Included in IOP-Selec

    On Inverse Scattering at a Fixed Energy for Potentials with a Regular Behaviour at Infinity

    Full text link
    We study the inverse scattering problem for electric potentials and magnetic fields in \ere^d, d\geq 3, that are asymptotic sums of homogeneous terms at infinity. The main result is that all these terms can be uniquely reconstructed from the singularities in the forward direction of the scattering amplitude at some positive energy.Comment: This is a slightly edited version of the previous pape

    Nonlocal ultrafast demagnetization dynamics of Co/Pt multilayers by optical field enhancement

    Get PDF
    The influence on ultrafast demagnetization dynamics of metallic nano-structured gratings deposited on thin films of magnetic Co/Pt multilayers is investigated by the time-resolved optical Kerr effect. Depending on the polarization of the pump pulse, a pronounced enhancement of the demagnetization amplitude is found. Calculation of the inhomogeneous optical field distribution due to plasmon interaction and time-dependent solutions of the coupled electron, lattice, and spin temperatures in two dimensions show good agreement with the experimental data, as well as giving evidence of non-local demagnetization dynamics due to electron diffusion.BMBF, 05K10KTB, Verbundprojekt: FSP 301 - FLASH: Nanoskopische Systeme. Teilprojekt 1.1: Universelle Experimentierkammer für Streuexperimente mit kohärenten Femtosekunden-Röntgenpulsen Multi Purpose Coherent Scattering Chamber for FLASH and XFEL 'MPscatt

    Design and performance of personal cooling garments based on three-layer laminates

    Get PDF
    Personal cooling systems are mainly based on cold air or liquids circulating through a tubing system. They are weighty, bulky and depend on an external power source. In contrast, the laminate-based technology presented here offers new flexible and light weight cooling garments integrated into textiles. It is based on a three-layer composite assembled from two waterproof, but water vapor permeable membranes and a hydrophilic fabric in between. Water absorbed in the fabric will be evaporated by the body temperature resulting in cooling energy. The laminate's high adaptiveness makes it possible to produce cooling garments even for difficult anatomic topologies. The determined cooling energy of the laminate depends mainly on the environmental conditions (temperature, relative humidity, wind): heat flux at standard climatic conditions (20°C, 65% R.H., wind 5km/h) has measured 423.2±52.6W/m2, water vapor transmission resistance, R et, 10.83±0.38m2Pa/W and thermal resistance, R ct, 0.010±0.002m2K/W. Thermal conductivity, k, changed from 0.048±0.003 (dry) to 0.244±0.018W/mK (water added). The maximum fall in skin temperature, ∆T max, under the laminate was 5.7±1.2°C, taken from a 12 subject study with a thigh cooling garment during treadmill walking (23°C, 50% R.H., no wind) and a significant linear correlation (R=0.85, P=0.01) between body mass index and time to reach 67% of ∆T max could be determine

    Inverse Scattering at a Fixed Quasi-Energy for Potentials Periodic in Time

    Full text link
    We prove that the scattering matrix at a fixed quasi--energy determines uniquely a time--periodic potential that decays exponentially at infinity. We consider potentials that for each fixed time belong to L3/2L^{3/2} in space. The exponent 3/2 is critical for the singularities of the potential in space. For this singular class of potentials the result is new even in the time--independent case, where it was only known for bounded exponentially decreasing potentials.Comment: In this revised version I give a more detailed motivation of the class of potentials that I consider and I have corrected some typo
    • …
    corecore