65 research outputs found

    Liver carcinogenesis in a non-migratory fish: The association with polycyclic aromatic hydrocarbon exposure

    Get PDF
    Field and laboratory studies indicate a strong positive association between exposure to chemical pollutants in aquatic environments and development of neoplasia in fishes. This brief communication reviews some of the more important North American and European studies that have been conducted on this relationship. We then review work conducted on a small nonmigratory estuarine cyprinodontid teleost fish, the mummichog (Fundulus heteroclitus) in the industrialized Elizabeth River, Virginia USA. Histopathological surveys of mummichogs from variously degraded habitats indicate an association between PAH exposure and development of neoplasia. We have observed non-neoplastic lesions, preneoplasms and hepatic, biliary, exocrine pancreatic and vascular neoplasms in mummichogs inhabiting Virginia and Maryland estuaries. These lesions track a sediment PAH gradient with highest prevalence occurring in fish from PAI-I-contaminated sites in the industrialized portions of the Elizabeth River, Virginia. Liver metabolizing enzyme profiles typical of those observed in carcinogen-challenged laboratory rodents (e.g., depressed phase I enzymes, elevated phase II enzymes, elevated p-glycoprotein) provided additional support of a chemical etiology for the neoplasms occurring in these fish. Long-term laboratory exposure of mummichogs to creosote-contaminated sediments resulted in development of altered hepatocellular foci and hepatic neoplasms. Biomarkers of fish exposure and effects (e.g., CYPlA induction, bile FA C\u27s, DNA adducts, liver histopathology) are presently used in the Puget Sound, Washington USA and Elizabeth River, Virginia USA to track long-term environmental recovery following habitat remediation

    Epizootic mycobacteriosis in Chesapeake Bay striped bass: What is the fate of infected fish?

    Get PDF
    Striped bass (Morone saxatilis) in Chesapeake Bay, USA, are currently experiencing an epizootic of mycobacteriosis. Visceral disease prevalence in resident fish exceeds 50% and prevalence of skin ulcers can exceed 30% in some areas. Two primary hypotheses regarding emergence of this chronic bacterial disease propose that anthropogenic stressors constitute important underlying modulating factorshttps://scholarworks.wm.edu/vimsbooks/1081/thumbnail.jp

    Histopathology of the Internal Anchor Tag in Spot and Spotted Seatrout

    Get PDF

    Dermal mycobacteriosis and warming sea surface temperatures are associated with elevated mortality of striped bass in Chesapeake Bay

    Get PDF
    Temperature is hypothesized to alter disease dynamics, particularly when species are living at or near their thermal limits. When disease occurs in marine systems, this can go undetected, particularly if the disease is chronic and progresses slowly. As a result, population-level impacts of diseases can be grossly underestimated. Complex migratory patterns, stochasticity in recruitment, and data and knowledge gaps can hinder collection and analysis of data on marine diseases. New tools enabling quantification of disease impacts in marine environments include coupled biogeochemical hydrodynamic models (to hindcast key environmental data), and multievent, multistate mark-recapture (MMSMR) (to quantify the effects of environmental conditions on disease processes and assess population-level impacts). We used MMSMR to quantify disease processes and population impacts in an estuarine population of striped bass (Morone saxatilis) in Chesapeake Bay from 2005 to 2013. Our results supported the hypothesis that mycobacteriosis is chronic, progressive, and, frequently, lethal. Yearly disease incidence in fish age three and above was 89%, suggesting that this disease impacts nearly every adult striped bass. Mortality of diseased fish was high, particularly in severe cases, where it approached 80% in typical years. Severely diseased fish also had a 10-fold higher catchability than healthy fish, which could bias estimates of disease prevalence. For both healthy and diseased fish, mortality increased with the modeled average summer sea surface temperature (SST) at the mouth of the Rappahannock River; in warmer summers (average SST29 degrees C), a cohort is predicted to experience \u3e90% mortality in 1year. Regression of disease signs in mildly and moderately diseased fish wa

    Impact of Disease on the Survival of Three Commercially Fished Species

    Get PDF
    Recent increases in emergent infectious diseases have raised concerns about the sustainability of some marine species. The complexity and expense of studying diseases in marine systems often dictate that conservation and management decisions are made without quantitative data on population-level impacts of disease. Mark-recapture is a powerful, underutilized, tool for calculating impacts of disease on population size and structure, even in the absence of etiological information. We applied logistic regression models to mark-recapture data to obtain estimates of disease-associated mortality rates in three commercially important marine species: snow crab (Chionoecetes opilio) in Newfoundland, Canada, that experience sporadic epizootics of bitter crab disease; striped bass (Morone saxatilis) in the Chesapeake Bay, USA, that experience chronic dermal and visceral mycobacteriosis; and American lobster (Homarus americanus) in the Southern New England stock, that experience chronic epizootic shell disease. All three diseases decreased survival of diseased hosts. Survival of diseased adult male crabs was 1% (0.003-0.022, 95% CI) that of uninfected crabs indicating nearly complete mortality of infected crabs in this life stage. Survival of moderately and severely diseased striped bass (which comprised 15% and 11% of the population, respectively) was 84% (70-100%, 95% CI), and 54% (42-68%, 95% CI) that of healthy striped bass. The disease-adjusted yearly natural mortality rate for striped bass was 0.29, nearly double the previously accepted value, which did not include disease. Survival of moderately and severely diseased lobsters was 30% (15-60%, 95% CI) that of healthy lobsters and survival of mildly diseased lobsters was 45% (27-75%, 95% CI) that of healthy lobsters. High disease mortality in ovigerous females may explain the poor recruitment and rapid declines observed in this population. Stock assessments should account for disease-related mortality when resource management options are evaluated. © 2017 by the Ecological Society of America

    Climate change and aquatic animal health in Virginia : effects and responses

    Get PDF
    Climate change, with concomitant increases in sea level, temperature, greenhouse gases and alterations in precipitation, is a major environmental challenge for the future management of Virginia’s valuable marine resources

    Establishment of a Transgenic Zebrafish Line for Superficial Skin Ablation and Functional Validation of Apoptosis Modulators In Vivo

    Get PDF
    BACKGROUND: Zebrafish skin is composed of enveloping and basal layers which form a first-line defense system against pathogens. Zebrafish epidermis contains ionocytes and mucous cells that aid secretion of acid/ions or mucous through skin. Previous studies demonstrated that fish skin is extremely sensitive to external stimuli. However, little is known about the molecular mechanisms that modulate skin cell apoptosis in zebrafish. METHODOLOGY/PRINCIPAL FINDINGS: This study aimed to create a platform to conduct conditional skin ablation and determine if it is possible to attenuate apoptotic stimuli by overexpressing potential apoptosis modulating genes in the skin of live animals. A transgenic zebrafish line of Tg(krt4:NTR-hKikGR)(cy17) (killer line), which can conditionally trigger apoptosis in superficial skin cells, was first established. When the killer line was incubated with the prodrug metrodinazole, the superficial skin displayed extensive apoptosis as judged by detection of massive TUNEL- and active caspase 3-positive signals. Great reductions in NTR-hKikGR(+) fluorescent signals accompanied epidermal cell apoptosis. This indicated that NTR-hKikGR(+) signal fluorescence can be utilized to evaluate apoptotic events in vivo. After removal of metrodinazole, the skin integrity progressively recovered and NTR-hKikGR(+) fluorescent signals gradually restored. In contrast, either crossing the killer line with testing lines or transiently injecting the killer line with testing vectors that expressed human constitutive active Akt1, mouse constitutive active Stat3, or HPV16 E6 element displayed apoptosis-resistant phenotypes to cytotoxic metrodinazole as judged by the loss of reduction in NTR-hKikGR(+) fluorescent signaling. CONCLUSION/SIGNIFICANCE: The killer/testing line binary system established in the current study demonstrates a nitroreductase/metrodinazole system that can be utilized to conditionally perform skin ablation in a real-time manner, and provides a valuable tool to visualize and quantify the anti-apoptotic potential of interesting target genes in vivo. The current work identifies a potential use for transgenic zebrafish as a high-throughput platform to validate potential apoptosis modulators in vivo
    corecore