304 research outputs found

    Optimal redundancy against disjoint vulnerabilities in networks

    Get PDF
    Redundancy is commonly used to guarantee continued functionality in networked systems. However, often many nodes are vulnerable to the same failure or adversary. A "backup" path is not sufficient if both paths depend on nodes which share a vulnerability.For example, if two nodes of the Internet cannot be connected without using routers belonging to a given untrusted entity, then all of their communication-regardless of the specific paths utilized-will be intercepted by the controlling entity.In this and many other cases, the vulnerabilities affecting the network are disjoint: each node has exactly one vulnerability but the same vulnerability can affect many nodes. To discover optimal redundancy in this scenario, we describe each vulnerability as a color and develop a "color-avoiding percolation" which uncovers a hidden color-avoiding connectivity. We present algorithms for color-avoiding percolation of general networks and an analytic theory for random graphs with uniformly distributed colors including critical phenomena. We demonstrate our theory by uncovering the hidden color-avoiding connectivity of the Internet. We find that less well-connected countries are more likely able to communicate securely through optimally redundant paths than highly connected countries like the US. Our results reveal a new layer of hidden structure in complex systems and can enhance security and robustness through optimal redundancy in a wide range of systems including biological, economic and communications networks.Comment: 15 page

    Validating Continuum Lowering Models via Multi-Wavelength Measurements of Integrated X-ray Emission

    Full text link
    X-ray emission spectroscopy is a well-established technique used to study continuum lowering in dense plasmas. It relies on accurate atomic physics models to robustly reproduce high-resolution emission spectra, and depends on our ability to identify spectroscopic signatures such as emission lines or ionization edges of individual charge states within the plasma. Here we describe a method that forgoes these requirements, enabling the validation of different continuum lowering models based solely on the total intensity of plasma emission in systems driven by narrow-bandwidth x-ray pulses across a range of wavelengths. The method is tested on published Al spectroscopy data and applied to the new case of solid-density partially-ionized Fe plasmas, where extracting ionization edges directly is precluded by the significant overlap of emission from a wide range of charge states

    Possible detection of singly-ionized oxygen in the Type Ia SN 2010kg

    Get PDF
    We present direct spectroscopic modeling of 11 high-S/N observed spectra of the Type Ia SN 2010kg, taken between -10 and +5 days with respect to B-maximum. The synthetic spectra, calculated with the SYN++ code, span the range between 4100 and 8500 \r{A}. Our results are in good agreement with previous findings for other Type Ia SNe. Most of the spectral features are formed at or close to the photosphere, but some ions, like Fe II and Mg II, also form features at ~2000 - 5000 km s−1^{-1} above the photosphere. The well-known high-velocity features of the Ca II IR-triplet as well as Si II λ\lambda6355 are also detected. The single absorption feature at ~4400 \r{A}, which usually has been identified as due to Si III, is poorly fit with Si III in SN 2010kg. We find that the fit can be improved by assuming that this feature is due to either C III or O II, located in the outermost part of the ejecta, ~4000 - 5000 km s−1^{-1} above the photosphere. Since the presence of C III is unlikely, because of the lack of the necessary excitation/ionization conditions in the outer ejecta, we identify this feature as due to O II. The simultaneous presence of O I and O II is in good agreement with the optical depth calculations and the temperature distribution in the ejecta of SN 2010kg. This could be the first identification of singly ionized oxygen in a Type Ia SN atmosphere.Comment: Submitted to MNRA

    Photometry of SN 2002bo with template image subtraction

    Full text link
    VRI photometry of the type Ia supernova 2002bo is presented. This SN exploded in a dusty region of the host galaxy NGC 3190, thus, subtraction of a template frame was necessary to obtain reliable photometry. We used a template frame of NGC 3190 taken during the course of our galaxy imaging project, fortunately, just a few days before SN 2002bo was discovered. The aim of this project is to collect template frames of nearby galaxies that are potential hosts of bright SNe. Subtraction of pre-SN images helped us to exclude the background light contamination of the host galaxy. The maximum occurred at JD 2452346, with maximal V brightness of 13.58. MLCS analysis led to T0(B)=JD 2452346.1 pm 0.8 (fiducial B-maximum), E(B-V)=0.24 pm 0.02, mu0=32.46 pm 0.06, Delta=-0.14 pm 0.04. E(B-V)=0.24(2) indicates a significant extinction in the host galaxy as the galactic reddening is negligible toward NGC 3190. The accepted value of Delta indicates that SN 2002bo was a slightly overluminous SN by about 0.14 relative to fiducial SN Type Ia. The distance turned out to be 31.0 pm 3 Mpc. In addition, the heavily obscured SN 2002cv was also detected on the I frame taken on JD 2452434 (June 8, 2002), and a variable star is found in the field, very close to the host galaxy.Comment: accepted by Astronomy and Astrophysic

    XUV Opacity of Aluminum between the Cold-Solid to Warm-Plasma Transition

    Full text link
    We present calculations of the free-free XUV opacity of warm, solid-density aluminum at photon energies between the plasma frequency at 15 eV and the L-edge at 73 eV, using both density functional theory combined with molecular dynamics and a semi-analytical model in the RPA framework with the inclusion of local field corrections. As the temperature is increased from room temperature to 10 eV, with the ion and electron temperatures equal, we calculate an increase in the opacity in the range over which the degree of ionization is constant. The effect is less pronounced if only the electron temperature is allowed to increase. The physical significance of these increases is discussed in terms of intense XUV-laser matter interactions on both femtosecond and picosecond time-scales.Comment: 4 pages, 3 figure

    Correlation energy of the paramagnetic electron gas at the thermodynamic limit

    Get PDF
    The variational and diffusion quantum Monte Carlo methods are used to calculate the correlation energy of the paramagnetic three-dimensional homogeneous electron gas at intermediate to high density. Ground state energies in finite cells are determined using Slater-Jastrow-backflow trial wave functions, and finite-size errors are removed using twist-averaged boundary conditions and extrapolation of the energy per particle to the thermodynamic limit of infinite system size. Our correlation energies in the thermodynamic limit are lower (i.e., more negative, and therefore more accurate according to the variational principle) than previous results, and can be used for the parameterization of density functionals to be applied to high-density systems

    Correlation energy of the spin-polarized electron liquid by quantum Monte Carlo

    Full text link
    Variational and diffusion quantum Monte Carlo (VMC and DMC) methods with Slater-Jastrow-backflow trial wave functions are used to study the spin-polarized three-dimensional uniform electron fluid. We report ground state VMC and DMC energies in the density range 0.5≤rs≤200.5 \leq r_\text{s} \leq 20. Finite-size errors are corrected using canonical-ensemble twist-averaged boundary conditions and extrapolation of the twist-averaged energy per particle calculated at three system sizes (N=113, 259, and 387) to the thermodynamic limit of infinite system size. The DMC energies in the thermodynamic limit are used to parameterize a local spin density approximation correlation function for inhomogeneous electron systems.Comment: arXiv admin note: substantial text overlap with arXiv:2209.1022
    • …
    corecore