180 research outputs found
QCD with Large Number of Quarks: Effects of the Instanton -- Anti-instanton Pairs
We calculate the contribution of the instanton -- anti-instanton ()
pairs to the vacuum energy of QCD-like theories with light fermions using
the saddle point method. We find a qualitative change of the behavior: for it starts to oscillate with . Similar behaviour was known for
quantum mechanical systems interacting with fermions. We discuss the possible
consequences of this phenomenon, and its relation to the mechanism of chiral
symmetry breaking in these theories. We also discuss the asymptotics of the
perturbative series associated with the contribution, comparing our
results with those in literature.Comment: 11 pages, Late
Wilsonian Matching of Effective Field Theory with Underlying QCD
We propose a novel way of matching effective field theory with the underlying
QCD in the sense of a Wilsonian renormalization group equation (RGE). We derive
Wilsonian matching conditions between current correlators obtained by the
operator product expansion in QCD and those by the hidden local symmetry (HLS)
model. This determines without much ambiguity the bare parameters of the HLS at
the cutoff scale in terms of the QCD parameters. Physical quantities for the pi
and rho system are calculated by the Wilsonian RGE's from the bare parameters
in remarkable agreement with the experiment.Comment: 13 pages, 4 figures, Minor corrections. This is the version to appear
in Physical Review
The Instanton Density at Finite Temperatures
For {\it low} T new strict results for the instanton density n(T) are
reported. Using the PCAC methods, we express n(T) in terms of {\it vacuum}
average values of certain operators, times their {\it calculated} T-dependence.
At high T, we discuss the {\it applicability} limits of the perturbative
results. We further speculate about possible behaviour of n(T) at
Pion and Eta Strings
In this paper we construct a string-like classical solution, the pion-string,
in the linear sigma model. We then study the stability of the pion-string, and
find that it is unstable in the parameter space allowed experimentally. We also
speculate on the existance of an unstable eta-string, associated with
spontaneous breakdown of the anomalous symmetry in QCD at high
temperatures. The implications of the pion and eta strings for cosmology and
heavy ion collisions are briefly mentioned.Comment: 5 pages, LATE
A Mean Field Approach To The Instanton-Induced Effect Close To The QCD Phase Transition
In the instanton models the chiral phase transition is driven by a transition
from random instanton-antiinstanton liquid and correlated
instanton-antiinstanton molecules. So far this phenomenon was studied by
numerical simulations, while we develop alternative semi-analytic approach. For
two massless quark flavors, both instantons and ``molecules" generate specific
4-fermion effective interactions. After those are derived, we determine the
temperature dependence of the thermodynamic quantities, the quark condensate
and the fraction of molecules using standard mean field method. Using
Bethe-Salpeter equation, we calculate T-dependence of mesonic correlation
functions.Comment: 26 pages, LaTeX, 6 postscript files of 6 figures in additio
Diquark Bose Condensates in High Density Matter and Instantons
Instantons lead to strong correlations between up and down quarks with spin
zero and anti-symmetric color wave functions. In cold and dense matter,
and 50 MeV, these pairs Bose-condense,
replacing the usual and
condensates.Comment: 4 pages ReVTeX, 2 eps-figures included using epsf.st
Meson masses in large Nf QCD from the Bethe-Salpeter equation
We solve the homogeneous Bethe-Salpeter (HBS) equation for the scalar,
pseudoscalar, vector, and axial-vector bound states of quark and anti-quark in
large Nf QCD with the improved ladder approximation in the Landau gauge. The
quark mass function in the HBS equation is obtained from the Schwinger-Dyson
(SD) equation in the same approximation for consistency with the chiral
symmetry. Amazingly, due to the fact that the two-loop running coupling of
large Nf QCD is explicitly written in terms of an analytic function, large Nf
QCD turns out to be the first example in which the SD equation can be solved in
the complex plane and hence the HBS equation directly in the time-like region.
We find that approaching the chiral phase transition point from the broken
phase, the scalar, vector, and axial-vector meson masses vanish to zero with
the same scaling behavior, all degenerate with the massless pseudoscalar meson.
This may suggest a new type of manifestation of the chiral symmetry restoration
in large Nf QCD.Comment: 33 pages, 16 figures. Typos are corrected. Minor corrections and
references are added. Version to appear in Phys. Rev.
Nuclear Modification Factors for Hadrons At Forward and Backward Rapidities in Deuteron-Gold Collisions at sqrt(s_NN) = 200 GeV
We report on charged hadron production in deuteron-gold reactions at
sqrt(s_NN) = 200 GeV. Our measurements in the deuteron-direction cover 1.4 <
eta < 2.2, referred to as forward rapidity, and in the gold-direction -2.0 <
eta < -1.4, referred to as backward rapidity, and a transverse momentum range
p_T = 0.5-4.0 GeV/c. We compare the relative yields for different deuteron-gold
collision centrality classes. We observe a suppression relative to binary
collision scaling at forward rapidity, sensitive to low momentum fraction (x)
partons in the gold nucleus, and an enhancement at backward rapidity, sensitive
to high momentum fraction partons in the gold nucleus.Comment: 330 authors, 6 pages text, 4 figures, REVTeX4. Published in Physical
Review Letters. Minor changes over previous version in response to referee
and editor comments, plus updating of references. Plain text data tables for
the points plotted in figures for this and previous PHENIX publications are
publicly available at http://www.phenix.bnl.gov/papers.htm
Centrality dependence of charged hadron production in deuteron+gold and nucleon+gold collisions at sqrt(s_NN)=200 GeV
We present transverse momentum (p_T) spectra of charged hadrons measured in
deuteron-gold and nucleon-gold collisions at \sqrts = 200 GeV for four
centrality classes. Nucleon-gold collisions were selected by tagging events in
which a spectator nucleon was observed in one of two forward rapidity
detectors. The spectra and yields were investigated as a function of the number
of binary nucleon-nucleon collisions, \nu, suffered by deuteron nucleons. A
comparison of charged particle yields to those in p+p collisions show that the
yield per nucleon-nucleon collision saturates with \nu for high momentum
particles. We also present the charged hadron to neutral pion ratios as a
function of p_T.Comment: 330 authors, 15 pages text, 16 figures, 3 tables. Submitted to Phys.
Rev. Lett. v2 has minor changes to reflect revisions during review process.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …
