39 research outputs found

    Strong asymptotics of the recurrence coefficients of orthogonal polynomials associated to the generalized Jacobi weight

    Get PDF
    We study asymptotics of the recurrence coefficients of orthogonal polynomials associated to the generalized Jacobi weight, which is a weight function with a finite number of algebraic singularities on [−1,1][-1,1]. The recurrence coefficients can be written in terms of the solution of the corresponding Riemann-Hilbert problem for orthogonal polynomials. Using the steepest descent method of Deift and Zhou, we analyze the Riemann-Hilbert problem, and obtain complete asymptotic expansions of the recurrence coefficients. We will determine explicitly the order 1/n1/n terms in the expansions. A critical step in the analysis of the Riemann-Hilbert problem will be the local analysis around the algebraic singularities, for which we use Bessel functions of appropriate order.Comment: 31 pages, 6 figures, 21 reference

    Universality for eigenvalue correlations at the origin of the spectrum

    Full text link
    We establish universality of local eigenvalue correlations in unitary random matrix ensembles (1/Z_n) |\det M|^{2\alpha} e^{-n\tr V(M)} dM near the origin of the spectrum. If V is even, and if the recurrence coefficients of the orthogonal polynomials associated with |x|^{2\alpha} e^{-nV(x)} have a regular limiting behavior, then it is known from work of Akemann et al., and Kanzieper and Freilikher that the local eigenvalue correlations have universal behavior described in terms of Bessel functions. We extend this to a much wider class of confining potentials V. Our approach is based on the steepest descent method of Deift and Zhou for the asymptotic analysis of Riemann-Hilbert problems. This method was used by Deift et al. to establish universality in the bulk of the spectrum. A main part of the present work is devoted to the analysis of a local Riemann-Hilbert problem near the origin.Comment: 28 pages, 6 figures, technical problem in second version removed, to appear in Commun. Math. Phy

    The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on [−1,1]

    Get PDF
    We consider polynomials that are orthogonal on [−1,1] with respect to a modified Jacobi weight (1− ) (1+ ) ( ), with , >−1 and real analytic and strictly positive on [−1,1]. We obtain full asymptotic expansions for the monic and orthonormal polynomials outside the interval [−1,1], for the recurrence coefficients and for the leading coefficients of the orthonormal polynomials. We also deduce asymptotic behavior for the Hankel determinants and for the monic orthogonal polynomials on the interval [−1,1]. For the asymptotic analysis we use the steepest descent technique for Riemann–Hilbert problems developed by Deift and Zhou, and applied to orthogonal polynomials on the real line by Deift, Kriecherbauer, McLaughlin, Venakides, and Zhou. In the steepest descent method we will use the SzegƑ function associated with the weight and for the local analysis around the endpoints ±1 we use Bessel functions of appropriate order, whereas Deift et al. use Airy functions

    Universality of a double scaling limit near singular edge points in random matrix models

    Full text link
    We consider unitary random matrix ensembles Z_{n,s,t}^{-1}e^{-n tr V_{s,t}(M)}dM on the space of Hermitian n x n matrices M, where the confining potential V_{s,t} is such that the limiting mean density of eigenvalues (as n\to\infty and s,t\to 0) vanishes like a power 5/2 at a (singular) endpoint of its support. The main purpose of this paper is to prove universality of the eigenvalue correlation kernel in a double scaling limit. The limiting kernel is built out of functions associated with a special solution of the P_I^2 equation, which is a fourth order analogue of the Painleve I equation. In order to prove our result, we use the well-known connection between the eigenvalue correlation kernel and the Riemann-Hilbert (RH) problem for orthogonal polynomials, together with the Deift/Zhou steepest descent method to analyze the RH problem asymptotically. The key step in the asymptotic analysis will be the construction of a parametrix near the singular endpoint, for which we use the model RH problem for the special solution of the P_I^2 equation. In addition, the RH method allows us to determine the asymptotics (in a double scaling limit) of the recurrence coefficients of the orthogonal polynomials with respect to the varying weights e^{-nV_{s,t}} on \mathbb{R}. The special solution of the P_I^2 equation pops up in the n^{-2/7}-term of the asymptotics.Comment: 32 pages, 3 figure

    Characteristic Polynomials of Sample Covariance Matrices: The Non-Square Case

    Full text link
    We consider the sample covariance matrices of large data matrices which have i.i.d. complex matrix entries and which are non-square in the sense that the difference between the number of rows and the number of columns tends to infinity. We show that the second-order correlation function of the characteristic polynomial of the sample covariance matrix is asymptotically given by the sine kernel in the bulk of the spectrum and by the Airy kernel at the edge of the spectrum. Similar results are given for real sample covariance matrices

    Universality for orthogonal and symplectic Laguerre-type ensembles

    Full text link
    We give a proof of the Universality Conjecture for orthogonal (beta=1) and symplectic (beta=4) random matrix ensembles of Laguerre-type in the bulk of the spectrum as well as at the hard and soft spectral edges. Our results are stated precisely in the Introduction (Theorems 1.1, 1.4, 1.6 and Corollaries 1.2, 1.5, 1.7). They concern the appropriately rescaled kernels K_{n,beta}, correlation and cluster functions, gap probabilities and the distributions of the largest and smallest eigenvalues. Corresponding results for unitary (beta=2) Laguerre-type ensembles have been proved by the fourth author in [23]. The varying weight case at the hard spectral edge was analyzed in [13] for beta=2: In this paper we do not consider varying weights. Our proof follows closely the work of the first two authors who showed in [7], [8] analogous results for Hermite-type ensembles. As in [7], [8] we use the version of the orthogonal polynomial method presented in [25], [22] to analyze the local eigenvalue statistics. The necessary asymptotic information on the Laguerre-type orthogonal polynomials is taken from [23].Comment: 75 page

    The existence of a real pole-free solution of the fourth order analogue of the Painleve I equation

    Full text link
    We establish the existence of a real solution y(x,T) with no poles on the real line of the following fourth order analogue of the Painleve I equation, x=Ty-({1/6}y^3+{1/24}(y_x^2+2yy_{xx})+{1/240}y_{xxxx}). This proves the existence part of a conjecture posed by Dubrovin. We obtain our result by proving the solvability of an associated Riemann-Hilbert problem through the approach of a vanishing lemma. In addition, by applying the Deift/Zhou steepest-descent method to this Riemann-Hilbert problem, we obtain the asymptotics for y(x,T) as x\to\pm\infty.Comment: 27 pages, 5 figure
    corecore