We consider unitary random matrix ensembles Z_{n,s,t}^{-1}e^{-n tr
V_{s,t}(M)}dM on the space of Hermitian n x n matrices M, where the confining
potential V_{s,t} is such that the limiting mean density of eigenvalues (as
n\to\infty and s,t\to 0) vanishes like a power 5/2 at a (singular) endpoint of
its support. The main purpose of this paper is to prove universality of the
eigenvalue correlation kernel in a double scaling limit. The limiting kernel is
built out of functions associated with a special solution of the P_I^2
equation, which is a fourth order analogue of the Painleve I equation. In order
to prove our result, we use the well-known connection between the eigenvalue
correlation kernel and the Riemann-Hilbert (RH) problem for orthogonal
polynomials, together with the Deift/Zhou steepest descent method to analyze
the RH problem asymptotically. The key step in the asymptotic analysis will be
the construction of a parametrix near the singular endpoint, for which we use
the model RH problem for the special solution of the P_I^2 equation.
In addition, the RH method allows us to determine the asymptotics (in a
double scaling limit) of the recurrence coefficients of the orthogonal
polynomials with respect to the varying weights e^{-nV_{s,t}} on \mathbb{R}.
The special solution of the P_I^2 equation pops up in the n^{-2/7}-term of the
asymptotics.Comment: 32 pages, 3 figure