39 research outputs found

    Rigorous formulation of oblique incidence scattering from dispersive media

    Full text link
    We formulate a finite-difference time-domain (FDTD) approach to simulate electromagnetic wave scattering from scatterers embedded in layered dielectric or dispersive media. At the heart of our approach is a derivation of an equivalent one-dimensional wave propagation equation for dispersive media characterized by a linear sum of Debye-, Drude- and Lorentz-type poles. The derivation is followed by a detailed discussion of the simulation setup and numerical issues. The developed methodology is tested by comparison with analytical reflection and transmission coefficients for scattering from a slab, illustrating good convergence behavior. The case of scattering from a sub-wavelength slit in a dispersive thin film is explored to demonstrate the applicability of our formulation to time- and incident angle-dependent analysis of surface waves generated by an obliquely incident plane wave.Comment: 35 pages, 8 figures, 4 table

    Radio Astronomy

    Get PDF
    Contains reports on five research projects.National Aeronautics and Space Administration (Grant NsG-419)Joint Services Electronics Program (Contract DA36-039-AMC-03200(E)

    Syndromics: A Bioinformatics Approach for Neurotrauma Research

    Get PDF
    Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational “syndrome” produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call “syndromics”, which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings

    Electromagnetic induction imaging with atomic magnetometers: Unlocking the low-conductivity regime

    No full text
    Electromagnetic induction imaging with atomic magnetometers has disclosed unprecedented domains for imaging, from security screening to material characterization. However, applications to low-conductivity specimens -- most notably for biomedical imaging -- require sensitivity, stability, and tunability only speculated thus far. Here, we demonstrate contactless and non-invasive imaging down to 50 S/m using a 50 fT/Hz−1/2^{-1/2} 87^{87}Rb radio-frequency atomic magnetometer operating in an unshielded environment and near room temperature. Two-dimensional images of test objects are obtained with a near-resonant imaging approach, which reduces the phase noise by a factor 172, with projected sensitivity of 1 S/m. Our results, an improvement of more than three orders of magnitude on previous imaging demonstrations, push electromagnetic imaging with atomic magnetometers to regions of interest for semiconductors, insulators, and biological tissues.Comment: 5 pages, 4 figures. Improved results. New manuscript layout. Published version available, see https://doi.org/10.1063/1.511681
    corecore