111 research outputs found
Vasodilator reactive oxygen species ameliorate perturbed myocardial oxygen delivery in exercising swine with multiple comorbidities
Multiple common cardiovascular comorbidities produce coronary microvascular dysfunction. We previously observed in swine that a combination of diabetes mellitus (DM), high fat diet (HFD) and chronic kidney disease (CKD) induced systemic inflammation, increased oxidative stress and produced coronary endothelial dysfunction, altering control of coronary microvascular tone via loss of NO bioavailability, which was associated with an increase in circulating endothelin (ET). In the present study, we tested the hypotheses that (1) ROS scavenging and (2) ETA+B-receptor blockade improve myocardial oxygen delivery in the same female swine model. Healthy female swine on normal pig chow served as controls (Normal). Five months after induction of DM (streptozotocin, 3 × 50 mg kg−1 i.v.), hypercholesterolemia (HFD) and CKD (renal embolization), swine were chronically instrumented and studied at rest and during exercise. Sustained hyperglycemia, hypercholesterolemia and renal dysfunction were accompanied by systemic inflammation and oxidative stress. In vivo ROS scavenging (TEMPOL + MPG) reduced myocardial oxygen delivery in DM + HFD + CKD swine, suggestive of a vasodilator influence of endogenous ROS, while it had no effect in Normal swine. In vitro wire myography revealed a vasodilator role for hydrogen peroxide (H2O2) in isolated small coronary artery segments from DM + HFD + CKD, but not Normal swine. Increased catalase activity and ceramide production in left ventricular myocardial tissue of DM + HFD + CKD swine further suggest that increased H2O2 acts as vasodilator ROS in the coronary microvasculature. Despite elevated ET-1 plasma levels in DM + HFD + CKD swine, ETA+B blockade did not affect myocardial oxygen delivery in Normal or DM + HFD + CKD swine. In conclusion, loss of NO bioavailability due to 5 months exposure to multiple comorbidities is partially compensated by increased H2O2-mediated coronary vasodilation.</p
Strain differences in behaviour and immunity in aged mice: Relevance to autism.
The BTBR mouse model has been shown to be associated with deficits social interaction and a pronounced engagement in repetitive behaviours. Autism spectrum disorder (ASD) is the most prevalent neurodevelopmental condition globally. Despite its ubiquity, most research into the disorder remains focused on childhood, with studies in adulthood and old age relatively rare. To this end, we explored the differences in behaviour and immune function in an aged BTBR T + Itpr3tf/J mouse model of the disease compared to a similarly aged C57bl/6 control. We show that while many of the alterations in behaviour that are observed in young animals are maintained (repetitive behaviours, antidepressant-sensitive behaviours, social deficits & cognition) there are more nuanced effects in terms of anxiety in older animals of the BTBR strain compared to C57bl/6 controls. Furthermore, BTBR animals also exhibit an activated T-cell system. As such, these results represent confirmation that ASD-associated behavioural deficits are maintained in ageing, and that that there may be need for differential interventional approaches to counter these impairments, potentially through targeting the immune system
Cancers of unknown primary origin: current perspectives and future therapeutic strategies
It is widely accepted that systemic neoplastic spread is a late event in tumour progression. However, sometimes, rapidly invasive cancers are diagnosed because of appearance of metastatic lesions in absence of a clearly detectable primary mass. This kind of disease is referred to as cancer of unknown primary (CUP) origin and accounts for 3-5% of all cancer diagnosis. There is poor consensus on the extent of diagnostic and pathologic evaluations required for these enigmatic cases which still lack effective treatment. Although technology to predict the primary tumour site of origin is improving rapidly, the key issue is concerning the biology which drives early occult metastatic spreading. This review provides the state of the art about clinical and therapeutic management of this malignant syndrome; main interest is addressed to the most recent improvements in CUP molecular biology and pathology, which will lead to successful tailored therapeutic options
Mid-life microbiota crises: middle age is associated with pervasive neuroimmune alterations that are reversed by targeting the gut microbiome
Male middle age is a transitional period where many physiological and psychological changes occur leading to cognitive and behavioural alterations, and a deterioration of brain function. However, the mechanisms underpinning such changes are unclear. The gut microbiome has been implicated as a key mediator in the communication between the gut and the brain, and in the regulation of brain homeostasis, including brain immune cell function. Thus, we tested whether targeting the gut microbiome by prebiotic supplementation may alter microglia activation and brain function in ageing. Male young adult (8 weeks) and middle-aged (10 months) C57BL/6 mice received diet enriched with a prebiotic (10% oligofructose-enriched inulin) or control chow for 14 weeks. Prebiotic supplementation differentially altered the gut microbiota profile in young and middle-aged mice with changes correlating with faecal metabolites. Functionally, this translated into a reversal of stress-induced immune priming in middle-aged mice. In addition, a reduction in ageing-induced infiltration of Ly-6Chi monocytes into the brain coupled with a reversal in ageing-related increases in a subset of activated microglia (Ly-6C+) was observed. Taken together, these data highlight a potential pathway by which targeting the gut microbiome with prebiotics can modulate the peripheral immune response and alter neuroinflammation in middle age. Our data highlight a novel strategy for the amelioration of age-related neuroinflammatory pathologies and brain function
Using fish models to investigate the links between microbiome and social behaviour: the next step for translational microbiome research?
Recent research has revealed surprisingly important connections between animals’ microbiome and social behaviour. Social interactions can affect the composition and function of the microbiome; conversely, the microbiome affects social communication by influencing the hosts’ central nervous system and peripheral chemical communication. These discoveries set the stage for novel research focusing on the evolution and physiology of animal social behaviour in relation to microbial transmission strategies. Here, we discuss the emerging roles of teleost fish models and their potential for advancing research fields, linked to sociality and microbial regulation. We argue that fish models, such as the zebrafish (Danio rerio, Cyprinidae), sticklebacks (Gasterosteidae), guppies (Poeciliidae) and cleaner–client dyads (e.g., obligate cleaner fish from the Labridae and Gobiidae families and their visiting clientele), will provide valuable insights into the roles of microbiome in shaping social behaviour and vice versa, while also being of direct relevance to the food and ornamental fish trades. The diversity of fish behaviour warrants more interdisciplinary research, including microbiome studies, which should have a strong ecological (field‐derived) approach, together with laboratory‐based cognitive and neurobiological experimentation. The implications of such integrated approaches may be of translational relevance, opening new avenues for future investigation using fish models
A highly invasive human glioblastoma pre-clinical model for testing therapeutics
Animal models greatly facilitate understanding of cancer and importantly, serve pre-clinically for evaluating potential anti-cancer therapies. We developed an invasive orthotopic human glioblastoma multiforme (GBM) mouse model that enables real-time tumor ultrasound imaging and pre-clinical evaluation of anti-neoplastic drugs such as 17-(allylamino)-17-demethoxy geldanamycin (17AAG). Clinically, GBM metastasis rarely happen, but unexpectedly most human GBM tumor cell lines intrinsically possess metastatic potential. We used an experimental lung metastasis assay (ELM) to enrich for metastatic cells and three of four commonly used GBM lines were highly metastatic after repeated ELM selection (M2). These GBM-M2 lines grew more aggressively orthotopically and all showed dramatic multifold increases in IL6, IL8, MCP-1 and GM-CSF expression, cytokines and factors that are associated with GBM and poor prognosis. DBM2 cells, which were derived from the DBTRG-05MG cell line were used to test the efficacy of 17AAG for treatment of intracranial tumors. The DMB2 orthotopic xenografts form highly invasive tumors with areas of central necrosis, vascular hyperplasia and intracranial dissemination. In addition, the orthotopic tumors caused osteolysis and the skull opening correlated to the tumor size, permitting the use of real-time ultrasound imaging to evaluate antitumor drug activity. We show that 17AAG significantly inhibits DBM2 tumor growth with significant drug responses in subcutaneous, lung and orthotopic tumor locations. This model has multiple unique features for investigating the pathobiology of intracranial tumor growth and for monitoring systemic and intracranial responses to antitumor agents
Bifidobacterium longum counters the effects of obesity: Partial successful translation from rodent to human
peer-reviewedBackgroundThe human gut microbiota has emerged as a key factor in the development of obesity. Certain probiotic strains have shown anti-obesity effects. The objective of this study was to investigate whether Bifidobacterium longum APC1472 has anti-obesity effects in high-fat diet (HFD)-induced obese mice and whether B. longum APC1472 supplementation reduces body-mass index (BMI) in healthy overweight/obese individuals as the primary outcome. B. longum APC1472 effects on waist-to-hip ratio (W/H ratio) and on obesity-associated plasma biomarkers were analysed as secondary outcomes. MethodsB. longum APC1472 was administered to HFD-fed C57BL/6 mice in drinking water for 16 weeks. In the human intervention trial, participants received B. longum APC1472 or placebo supplementation for 12 weeks, during which primary and secondary outcomes were measured at the beginning and end of the intervention. FindingsB. longum APC1472 supplementation was associated with decreased bodyweight, fat depots accumulation and increased glucose tolerance in HFD-fed mice. While, in healthy overweight/obese adults, the supplementation of B. longum APC1472 strain did not change primary outcomes of BMI (0.03, 95% CI [-0.4, 0.3]) or W/H ratio (0.003, 95% CI [-0.01, 0.01]), a positive effect on the secondary outcome of fasting blood glucose levels was found (-0.299, 95% CI [-0.44, -0.09]). InterpretationThis study shows a positive translational effect of B. longum APC1472 on fasting blood glucose from a preclinical mouse model of obesity to a human intervention study in otherwise healthy overweight and obese individuals. This highlights the promising potential of B. longum APC1472 to be developed as a valuable supplement in reducing specific markers of obesity. FundingThis research was funded in part by Science Foundation Ireland in the form of a Research Centre grant (SFI/12/RC/2273) to APC Microbiome Ireland and by a research grant from Cremo S.A
Genome sequencing and comparative genomics of the broad host-range pathogen Rhizoctonia solani AG8
Rhizoctonia solani is a soil-borne basidiomycete fungus with a necrotrophic lifestyle which is classified into fourteen reproductively incompatible anastomosis groups (AGs). One of these, AG8, is a devastating pathogen causing bare patch of cereals, brassicas and legumes. R. solani is a multinucleate heterokaryon containing significant heterozygosity within a single cell. This complexity posed significant challenges for the assembly of its genome. We present a high quality genome assembly of R. solani AG8 and a manually curated set of 13,964 genes supported by RNA-seq. The AG8 genome assembly used novel methods to produce a haploid representation of its heterokaryotic state. The whole-genomes of AG8, the rice pathogen AG1-IA and the potato pathogen AG3 were observed to be syntenic and co-linear. Genes and functions putatively relevant to pathogenicity were highlighted by comparing AG8 to known pathogenicity genes, orthology databases spanning 197 phytopathogenic taxa and AG1-IA.We also observed SNP-level “hypermutation” of CpG dinucleotides to TpG between AG8 nuclei, with similarities to repeat-induced point mutation (RIP). Interestingly, gene-coding regions were widely affected along with repetitive DNA, which has not been previously observed for RIP in mononuclear fungi of the Pezizomycotina. The rate of heterozygous SNP mutations within this single isolate of AG8 was observed to be higher than SNP mutation rates observed across populations of most fungal species compared. Comparative analyses were combined to predict biological processes relevant to AG8 and 308 proteins with effector-like characteristics, forming a valuable resource for further study of this pathosystem. Predicted effector-like proteins had elevated levels of non-synonymous point mutations relative to synonymous mutations (dN/dS), suggesting that they may be under diversifying selection pressures. In addition, the distant relationship to sequenced necrotrophs of the Ascomycota suggests the R. solani genome sequence may prove to be a useful resource in future comparative analysis of plant pathogens
Bifidobacterium longum counters the effects of obesity: partial successful translation from rodent to human
The human gut microbiota has emerged as a key factor in the development of obesity. Certain probiotic strains have shown anti-obesity effects. The objective of this study was to investigate whether Bifidobacterium longum APC1472 has anti-obesity effects in high-fat diet (HFD)-induced obese mice and whether B. longum APC1472 supplementation reduces body-mass index (BMI) in healthy overweight/obese individuals as the primary outcome. B. longum APC1472 effects on waist-to-hip ratio (W/H ratio) and on obesity-associated plasma biomarkers were analysed as secondary outcomes.
B. longum APC1472 was administered to HFD-fed C57BL/6 mice in drinking water for 16 weeks. In the human intervention trial, participants received B. longum APC1472 or placebo supplementation for 12 weeks, during which primary and secondary outcomes were measured at the beginning and end of the intervention.
B. longum APC1472 supplementation was associated with decreased bodyweight, fat depots accumulation and increased glucose tolerance in HFD-fed mice. While, in healthy overweight/obese adults, the supplementation of B. longum APC1472 strain did not change primary outcomes of BMI (0.03, 95% CI [-0.4, 0.3]) or W/H ratio (0.003, 95% CI [-0.01, 0.01]), a positive effect on the secondary outcome of fasting blood glucose levels was found (-0.299, 95% CI [-0.44, -0.09]).
This study shows a positive translational effect of B. longum APC1472 on fasting blood glucose from a preclinical mouse model of obesity to a human intervention study in otherwise healthy overweight and obese individuals. This highlights the promising potential of B. longum APC1472 to be developed as a valuable supplement in reducing specific markers of obesity.
This research was funded in part by Science Foundation Ireland in the form of a Research Centre grant (SFI/12/RC/2273) to APC Microbiome Ireland and by a research grant from Cremo S.A
FDG PET/CT in carcinoma of unknown primary
Carcinoma of unknown primary (CUP) is a heterogeneous group of metastatic malignancies in which a primary tumor could not be detected despite thorough diagnostic evaluation. Because of its high sensitivity for the detection of lesions, combined 18F-fluoro-2-deoxyglucose positron emission tomography (FDG PET)/computed tomography (CT) may be an excellent alternative to CT alone and conventional magnetic resonance imaging in detecting the unknown primary tumor. This article will review the use, diagnostic performance, and utility of FDG PET/CT in CUP and will discuss challenges and future considerations in the diagnostic management of CUP
- …