1,315 research outputs found
Uniqueness in MHD in divergence form: right nullvectors and well-posedness
Magnetohydrodynamics in divergence form describes a hyperbolic system of
covariant and constraint-free equations. It comprises a linear combination of
an algebraic constraint and Faraday's equations. Here, we study the problem of
well-posedness, and identify a preferred linear combination in this divergence
formulation. The limit of weak magnetic fields shows the slow magnetosonic and
Alfven waves to bifurcate from the contact discontinuity (entropy waves), while
the fast magnetosonic wave is a regular perturbation of the hydrodynamical
sound speed. These results are further reported as a starting point for
characteristic based shock capturing schemes for simulations with
ultra-relativistic shocks in magnetized relativistic fluids.Comment: To appear in J Math Phy
Calorimetry of gamma-ray bursts: echos in gravitational waves
Black holes surrounded by a disk or torus may drive the enigmatic
cosmological gamma-ray bursts (GRBs). Equivalence in poloidal topology to
pulsar magnetospheres shows a high incidence of the black hole-luminosity
into the surrounding magnetized matter. We argue that this emission is
re-radiated into gravitational waves at in frequencies of
order 1kHz, winds and, potentially, MeV neutrinos. The total energy budget and
input to the GRB from baryon poor jets are expected to be standard in this
scenario, consistent with recent analysis of afterglow data. Collimation of
these outflows by baryon rich disk or torus winds may account for the observed
spread in opening angles up to about . This model may be tested by future
LIGO/VIRGO observations.Comment: To appear in ApJ
Measurement of the ΔS=-ΔQ Amplitude from K_(e3)^0 Decay
We have measured the time distribution of the π^+e^-ν and π^-e^+ν modes from initial K^0's in a spark-chamber experiment performed at the Bevatron. From 1079 events between 0.2 and 7 K_S^0 lifetime, we find ReX=-0.069±0.036, ImX=+0.108_(-0.074)^(+0.092). This result is consistent with X=0 (relative probability = 0.25), but more than 4 standard deviations from the existing world average, +0.14 -0.13i
The Gowdy T3 Cosmologies revisited
We have examined, repeated and extended earlier numerical calculations of
Berger and Moncrief for the evolution of unpolarized Gowdy T3 cosmological
models. Our results are consistent with theirs and we support their claim that
the models exhibit AVTD behaviour, even though spatial derivatives cannot be
neglected. The behaviour of the curvature invariants and the formation of
structure through evolution both backwards and forwards in time is discussed.Comment: 11 pages, LaTeX, 6 figures, results and conclusions revised and
(considerably) expande
Hyper- and suspended-accretion states of rotating black holes and the durations of gamma-ray bursts
We analyze the temporal evolution of accretion onto rotating black holes
subject to large-scale magnetic torques. Wind torques alone drive a disk
towards collapse in a finite time , where is the
initial free-fall time and is the ratio of kinetic-to-poloidal
magnetic energy. Additional spin-up torques from a rapidly rotating black hole
can arrest the disk's inflow. We associate short/long gamma-ray bursts with
hyperaccretion/suspended-accretion onto slowly/rapidly spinning black holes.
This model predicts afterglow emission from short bursts, and may be tested by
HETE-II.Comment: accepted for publication in the ApJ
Gravitational radiation from gamma-ray bursts as observational opportunities for LIGO and VIRGO
Gamma-ray bursts are believed to originate in core-collapse of massive stars.
This produces an active nucleus containing a rapidly rotating Kerr black hole
surrounded by a uniformly magnetized torus represented by two counter-oriented
current rings. We quantify black hole spin-interactions with the torus and
charged particles along open magnetic flux-tubes subtended by the event
horizon. A major output of Egw=4e53 erg is radiated in gravitational waves of
frequency fgw=500 Hz by a quadrupole mass-moment in the torus. Consistent with
GRB-SNe, we find (i) Ts=90s (tens of s, Kouveliotou et al. 1993), (ii)
aspherical SNe of kinetic energy Esn=2e51 erg (2e51 erg in SN1998bw, Hoeflich
et al. 1999) and (iii) GRB-energies Egamma=2e50 erg (3e50erg in Frail et al.
2001). GRB-SNe occur perhaps about once a year within D=100Mpc. Correlating
LIGO/Virgo detectors enables searches for nearby events and their spectral
closure density 6e-9 around 250Hz in the stochastic background radiation in
gravitational waves. At current sensitivity, LIGO-Hanford may place an upper
bound around 150MSolar in GRB030329. Detection of Egw thus provides a method
for identifying Kerr black holes by calorimetry.Comment: to appear in PRD, 49
Localization, Coulomb interactions and electrical heating in single-wall carbon nanotubes/polymer composites
Low field and high field transport properties of carbon nanotubes/polymer
composites are investigated for different tube fractions. Above the percolation
threshold f_c=0.33%, transport is due to hopping of localized charge carriers
with a localization length xi=10-30 nm. Coulomb interactions associated with a
soft gap Delta_CG=2.5 meV are present at low temperature close to f_c. We argue
that it originates from the Coulomb charging energy effect which is partly
screened by adjacent bundles. The high field conductivity is described within
an electrical heating scheme. All the results suggest that using composites
close to the percolation threshold may be a way to access intrinsic properties
of the nanotubes by experiments at a macroscopic scale.Comment: 4 pages, 5 figures, Submitted to Phys. Rev.
Electron-Positron Jets from a Critically Magnetized Black Hole
The curved spacetime surrounding a rotating black hole dramatically alters
the structure of nearby electromagnetic fields. The Wald field which is an
asymptotically uniform magnetic field aligned with the angular momentum of the
hole provides a convenient starting point to analyze the effects of radiative
corrections on electrodynamics in curved spacetime. Since the curvature of the
spacetime is small on the scale of the electron's Compton wavelength, the tools
of quantum field theory in flat spacetime are reliable and show that a rotating
black hole immersed in a magnetic field approaching the quantum critical value
of ~G cm is unstable. Specifically, a maximally rotating
three-solar-mass black hole immersed in a magnetic field of ~G would be a copious producer of electron-positron pairs with a
luminosity of erg s.Comment: 10 pages, 6 figures, submitted to Phys. Rev.
Electron-positron outflow from black holes
Gamma-ray bursts (GRBs) appear as the brightest transient phenomena in the
Universe. The nature of the central engine in GRBs is a missing link in the
theory of fireballs to their stellar mass progenitors. Here it is shown that
rotating black holes produce electron-positron outflow when brought into
contact with a strong magnetic field. The outflow is produced by a coupling of
the spin of the black hole to the orbit of the particles. For a nearly extreme
Kerr black hole, particle outflow from an initial state of electrostatic
equilibrium has a normalized isotropic emission of erg/s, where B is the
external magnetic field strength, B_c=4.4 x 10^{13}G, and M is the mass of the
black hole. This initial outflow has a half-opening angle
. A connection with fireballs in -ray bursts is
given.Comment: 10 pages LaTe
Hunting Local Mixmaster Dynamics in Spatially Inhomogeneous Cosmologies
Heuristic arguments and numerical simulations support the Belinskii et al
(BKL) claim that the approach to the singularity in generic gravitational
collapse is characterized by local Mixmaster dynamics (LMD). Here, one way to
identify LMD in collapsing spatially inhomogeneous cosmologies is explored. By
writing the metric of one spacetime in the standard variables of another,
signatures for LMD may be found. Such signatures for the dynamics of spatially
homogeneous Mixmaster models in the variables of U(1)-symmetric cosmologies are
reviewed. Similar constructions for U(1)-symmetric spacetimes in terms of the
dynamics of generic -symmetric spacetime are presented.Comment: 17 pages, 5 figures. Contribution to CQG Special Issue "A Spacetime
Safari: Essays in Honour of Vincent Moncrief
- …