1,758 research outputs found

    Nutrient Limitation of Periphyton in a Spring-Fed, Coastal Stream in Florida, USA.

    Get PDF
    There is strong evidence to suggest that ground-water nitrate concentrations have increased in recent years and further increases are expected along portions of the central Gulf coast of Florida. Much of the nitrate enriched groundwater is discharged into surface waters through numerous freshwater springs that are characteristic of the area and the potential for eutrophication of their receiving waters is a legitimate concern. To test the potential effects of elevated nutrient concentrations on the periphyton community an in situ nutrient addition experiment was conducted in the spring-fed Chassahowitzka River, FL, USA, during the summer of 1999. Plastic tubes housing arrays of glass microscope slides were suspended in the stream. Periphyton colonizing the microscope slides was subjected to artificial increases in nitrogen, phosphorus or a combination of both. Slides from each tube were collected at 3- to 4- day intervals and the periphyton communities were measured for chlorophyll concentration. The addition of approximately 10 μg/L of phosphate above ambient concentrations significantly increased the amount of periphyton on artificial substrates relative to controls; the addition of approximately 100 μg/L of nitrate above ambient concentrations did not. The findings from this experiment implicated phosphorus, rather than nitrogen, as the nutrient that potentially limits periphyton growth in this system.(PDF contains 4 pages.

    Photoluminescence and Terahertz Emission from Femtosecond Laser-Induced Plasma Channels

    Full text link
    Luminescence as a mechanism for terahertz emission from femtosecond laser-induced plasmas is studied. By using a fully microscopic theory, Coulomb scattering between electrons and ions is shown to lead to luminescence even for a spatially homogeneous plasma. The spectral features introduced by the rod geometry of laser-induced plasma channels in air are discussed on the basis of a generalized mode-function analysis.Comment: 4 pages with 2 figures

    An infrared study of the double nucleus in NGC3256

    Full text link
    We present new resolved near and mid-IR imaging and N-band spectroscopy of the two nuclei in the merger system NGCA3256, the most IR luminous galaxy in the nearby universe. The results from the SED fit to the data are consistent with previous estimates of the amount of obscuration towards the nuclei and the nuclear star formation rates. However, we also find substantial differences in the infrared emission from the two nuclei which cannot be explained by obscuration alone. We conclude that the northern nucleus requires an additional component of warm dust in order to explain its properties. This suggests that local starforming conditions can vary significantly within the environment of a single system.Comment: Accepted for publication (MNRAS

    Recalculation of Proton Compton Scattering in Perturbative QCD

    Get PDF
    At very high energy and wide angles, Compton scattering on the proton (gamma p -> gamma p) is described by perturbative QCD. The perturbative QCD calculation has been performed several times previously, at leading twist and at leading order in alpha_s, with mutually inconsistent results, even when the same light-cone distribution amplitudes have been employed. We have recalculated the helicity amplitudes for this process, using contour deformations to evaluate the singular integrals over the light-cone momentum fractions. We do not obtain complete agreement with any previous result. Our results are closest to those of the most recent previous computation, differing significantly for just one of the three independent helicity amplitudes, and only for backward scattering angles. We present results for the unpolarized cross section, and for three different polarization asymmetries. We compare the perturbative QCD predictions for these observables with those of the handbag and diquark models. In order to reduce uncertainties associated with alpha_s and the three-quark wave function normalization, we have normalized the Compton cross section using the proton elastic form factor. The theoretical predictions for this ratio are about an order of magnitude below existing experimental data.Comment: Latex, 23 pages, 13 figures. Checked numerical integration one more way; added results for one more proton distribution amplitude; a few other minor changes. Version to appear in Phys. Rev.

    Explicit Model Realizing Parton-Hadron Duality

    Full text link
    We present a model that realizes both resonance-Regge (Veneziano) and parton-hadron (Bloom-Gilman) duality. We first review the features of the Veneziano model and we discuss how parton-hadron duality appears in the Bloom-Gilman model. Then we review limitations of the Veneziano model, namely that the zero-width resonances in the Veneziano model violate unitarity and Mandelstam analyticity. We discuss how such problems are alleviated in models that construct dual amplitudes with Mandelstam analyticity (so-called DAMA models). We then introduce a modified DAMA model, and we discuss its properties. We present a pedagogical model for dual amplitudes and we construct the nucleon structure function F2(x,Q2). We explicitly show that the resulting structure function realizes both Veneziano and Bloom-Gilman duality.Comment: 11 pages, 8 figure

    A new dynamical modeling of the WASP-47 system with CHEOPS observations

    Get PDF
    Among the hundreds of known hot Jupiters (HJs), only five have been found to have companions on short-period orbits. Within this rare class of multiple planetary systems, the architecture of WASP-47 is unique, hosting an HJ (planet-b) with both an inner and an outer sub-Neptunian mass companion (-e and -d, respectively) as well as an additional non-transiting, long-period giant (-c). The small period ratio between planets -b and -d boosts the transit time variation (TTV) signal, making it possible to reliably measure the masses of these planets in synergy with the radial velocity (RV) technique. In this paper, we present new space- and ground-based photometric data of WASP-47b and WASP-47-d, including 11 unpublished light curves from the ESA mission CHaracterising ExOPlanet Satellite (CHEOPS). We analyzed the light curves in a homogeneous way together with all the publicly available data to carry out a global N-body dynamical modeling of the TTV and RV signals. We retrieved, among other parameters, a mass and density for planet -d of Md = 15.5 ± 0.8 M⊕ and ρd = 1.69 ± 0.22 g cm−3, which is in good agreement with the literature and consistent with a Neptune-like composition. For the inner planet (-e), we found a mass and density of Me = 9.0 ± 0.5 M⊕ and ρe = 8.1 ± 0.5 g cm−3, suggesting an Earth-like composition close to other ultra-hot planets at similar irradiation levels. Though this result is in agreement with previous RV plus TTV studies, it is not in agreement with the most recent RV analysis (at 2.8σ), which yielded a lower density compatible with a pure silicate composition. This discrepancy highlights the still unresolved issue of suspected systematic offsets between RV and TTV measurements. In this paper, we also significantly improve the orbital ephemerides of all transiting planets, which will be crucial for any future follow-up

    Composition Dependence of the Structure and Electronic Properties of Liquid Ga-Se Alloys Studied by Ab Initio Molecular Dynamics Simulation

    Full text link
    Ab initio molecular dynamics simulation is used to study the structure and electronic properties of the liquid Ga-Se system at the three compositions Ga2_2Se, GaSe and Ga2_2Se3_3, and of the GaSe and Ga2_2Se3_3 crystals. The calculated equilibrium structure of GaSe crystal agrees well with available experimental data. The neutron-weighted liquid structure factors calculated from the simulations are in reasonable agreement with recent neutron diffraction measurements. Simulation results for the partial radial distribution functions show that the liquid structure is closely related to that of the crystals. A close similarity between solid and liquid is also found for the electronic density of states and charge density. The calculated electronic conductivity decreases strongly with increasing Se content, in accord with experimental measurements.Comment: REVTeX, 8 pages and 12 uuencoded PostScript figures, submitted to Phys. Rev. B. corresponding author: [email protected]

    Rapidity gaps in perturbative QCD

    Get PDF
    We analyze diffractive deep inelastic scattering within perturbative QCD by studying lepton scattering on a heavy quark target. Simple explicit expressions are derived in impact parameter space for the photon wave function and the scattering cross sections corresponding to single and double Coulomb gluon exchange. At limited momentum transfers to the target, the results agree with the general features of the ``aligned jet model''. The color--singlet exchange cross section receives a leading twist contribution only from the aligned jet region, where the transverse size of the photon wave function remains finite in the Bjorken scaling limit. In contrast to inclusive DIS, in diffractive events there is no leading twist contribution to σL/σT\sigma_L/\sigma_T from the lowest order (qqˉ)(q\bar q) photon Fock state, and the cross section for heavy quarks is power suppressed in the quark mass. There are also important contributions with large momentum transfer to the target, which corresponds to events having high transverse momentum production in both the projectile and target rapidity regions, separated by a rapidity gap.Comment: 27 pages, LaTeX, 6 figures. Duplicate figure removed, paper unchange

    A classical theory for second-harmonic generation from metallic nanoparticles

    Full text link
    In this article, we develop a classical electrodynamic theory to study the optical nonlinearities of metallic nanoparticles. The quasi-free electrons inside the metal are approximated as a classical Coulomb-interacting electron gas, and their motion under the excitation of an external electromagnetic field is described by the plasma equations. This theory is further tailored to study second-harmonic generation. Through detailed experiment-theory comparisons, we validate this classical theory as well as the associated numerical algorithm. It is demonstrated that our theory not only provides qualitative agreement with experiments, it also reproduces the overall strength of the experimentally observed second-harmonic signals.Comment: 12 pages, 3 figures. Submitte
    corecore