155 research outputs found

    An Open-Label, Multicenter Observational Study for Patients with Alzheimer's Disease Treated with Memantine in the Clinical Practice

    Get PDF
    Background/Aims: In this post-marketing observational study, the safety and effectiveness of memantine were evaluated in patients with Alzheimer’s disease (AD). Methods: In a 6-month, observational, open-label study at 202 specialist sites in Greece, the effectiveness of memantine was evaluated using the Mini-Mental State Examination (MMSE) and the Instrumental Activities of Daily Living (IADL) scale at baseline, and after 3 and 6 months. Discontinuation rates and adverse drug reactions (ADRs) were also recorded to evaluate the safety profile of memantine. Results: 2,570 patients participated in the study. Three and 6 months after baseline, MMSE and IADL scores were significantly improved compared to baseline. At the end of the study, 67% of the patients had improved their MMSE score; 7.1% of the patients reported ≧1 ADRs, and treatment was discontinued due to ADR in 0.7%. Conclusion: Memantine was well tolerated and had a positive effect on the patient’s cognitive and functional ability in real-life clinical practice, in agreement with randomized, controlled trials

    Energy efficiency considerations in integrated IT and optical network resilient infrastructures

    Get PDF
    The European Integrated Project GEYSERS - Generalised Architecture for Dynamic Infrastructure Services - is concentrating on infrastructures incorporating integrated optical network and IT resources in support of the Future Internet with special emphasis on cloud computing. More specifically GEYSERS proposes the concept of Virtual Infrastructures over one or more interconnected Physical Infrastructures comprising both network and IT resources. Taking into consideration the energy consumption levels associated with the ICT today and the expansion of the Internet in size and complexity, that incurring increased energy consumption of both IT and network resources, energy efficient infrastructure design becomes critical. To address this need, in the framework of GEYSERS, we propose energy efficient design of infrastructures incorporating integrated optical network and IT resources, supporting resilient end-to-end services. Our modeling results quantify significant energy savings of the proposed solution by jointly optimizing the allocation of both network and IT resources

    Scalable Impairment-Aware Anycast Routing in Multi-Domain Optical Grid Networks

    Get PDF
    ABSTRACT In optical Grid networks, the main challenge is to account for not only network parameters, but also for resource availability. Anycast routing has previously been proposed as an effective solution to provide job scheduling services in optical Grids, offering a generic interface to access Grid resources and services. The main weakness of this approach is its limited scalability, especially in a multi-domain scenario. This paper proposes a novel anycast proxy architecture, which extends the anycast principle to a multi-domain scenario. The main purpose of the architecture is to perform aggregation of resource and network states, and as such improve computational scalability and reduce control plane traffic. Furthermore, the architecture has the desirable properties of allowing Grid domains to maintain their autonomy and hide internal configuration details from other domains. Finally, we propose an impairment-aware anycast routing algorithm that incorporates the main physical layer characteristics of large-scale optical networks into its path computation process. By integrating the proposed routing scheme into the introduced architecture we demonstrate significant network performance improvements. Keywords: Grid computing, routing algorithms, optical networks, physical impairments, anycast routing. INTRODUCTION Today, the need for network systems to support storage and computing services for science and business, is often satisfied by relatively isolated computing infrastructure (clusters). Migration to truly distributed and integrated applications requires optimization and (re)design of the underlying network technology to create a Grid platform for the cost and resource efficient delivery of network services with substantial data transfer, processing power and/or data storage requirements. Optical networks offer an undeniable potential for the Grid, given their proven track-record in the context of high-speed, long-haul, networking. Not only eScience applications dealing with large experimental data sets (e.g. particle physics) but also business/consumer oriented applications can benefit from optical Grid infrastructure [1]: both the high data rates typical of eScience applications and the low latency requirements of consumer/business applications (cf. interactivity) can effectively be addressed. When using transparent WDM as such network technology, signals are transported end-to-end optically without being converted to the electrical domain in between. Connection provisioning of all-optical connections (lightpaths) between source and destination nodes is based on specific routing and wavelength assignment algorithms (RWA). Traditional RWA schemes only account for network conditions such as connectivity and available capacity, without considering physical layer details. However, in transparent optical networks covering large geographical areas, the optical signal experiences the accumulation of physical impairments through transmission and switching, possibly resulting in unacceptable signal quality Another emerging and challenging task in distributed and heterogeneous computing environments, is job scheduling: when and where to execute a given Grid job, based on the requirements of the job (for instance a deadline and minimal computational power) and the current state of the network and resources. Traditionally, a local scheduler optimizes utilization and performance of a single Grid site, while a meta-scheduler is distributes workload across different sites. Current implementations of these (meta-)schedulers only account for Grid resource availability In this paper we propose a novel architecture to support impairment-aware anycast routing for large-scale optical Grid networks. Section 2 discusses general approaches to support multi-domain networks. We then proceed to introduce a novel architecture, which can provide anycast Grid services in a multi-domain scenario (Section 3). Simulation analysis is used to demonstrate the improved scalability without incurring significant performance loss. Furthermore, Section 4 shows how to incorporate physical layer impairments, to further improve the performance of optical Grid networks. Conclusions are presented in Section 5

    Performance Evaluation of Next-Generation Elastic Backhaul with Flexible VCSEL-based WDM Fronthaul

    Get PDF
    Neighbour joining tree of 217 rice accessions. Accessions names are shown. (PDF 1227 kb

    Streptococcus pneumoniae Serotype-2 Childhood Meningitis in Bangladesh: A Newly Recognized Pneumococcal Infection Threat

    Get PDF
    BACKGROUND: Streptococcus pneumoniae is a leading cause of meningitis in countries where pneumococcal conjugate vaccines (PCV) targeting commonly occurring serotypes are not routinely used. However, effectiveness of PCV would be jeopardized by emergence of invasive pneumococcal diseases (IPD) caused by serotypes which are not included in PCV. Systematic hospital based surveillance in Bangladesh was established and progressively improved to determine the pathogens causing childhood sepsis and meningitis. This also provided the foundation for determining the spectrum of serotypes causing IPD. This article reports an unprecedented upsurge of serotype 2, an uncommon pneumococcal serotype, without any known intervention. METHODS AND FINDINGS: Cases with suspected IPD had blood or cerebrospinal fluid (CSF) collected from the beginning of 2001 till 2009. Pneumococcal serotypes were determined by capsular swelling of isolates or PCR of culture-negative CSF specimens. Multicenter national surveillance, expanded from 2004, identified 45,437 patients with suspected bacteremia who were blood cultured and 10,618 suspected meningitis cases who had a lumber puncture. Pneumococcus accounted for 230 culture positive cases of meningitis in children <5 years. Serotype-2 was the leading cause of pneumococcal meningitis, accounting for 20.4% (45/221; 95% CI 15%-26%) of cases. Ninety eight percent (45/46) of these serotype-2 strains were isolated from meningitis cases, yielding the highest serotype-specific odds ratio for meningitis (29.6; 95% CI 3.4-256.3). The serotype-2 strains had three closely related pulsed field gel electrophoresis types. CONCLUSIONS: S. pneumoniae serotype-2 was found to possess an unusually high potential for causing meningitis and was the leading serotype-specific cause of childhood meningitis in Bangladesh over the past decade. Persisting disease occurrence or progressive spread would represent a major potential infection threat since serotype-2 is not included in PCVs currently licensed or under development
    • …
    corecore