56 research outputs found

    TRPA1 Mediates Mechanical Currents in the Plasma Membrane of Mouse Sensory Neurons

    Get PDF
    Mechanosensitive channels serve as essential sensors for cells to interact with their environment. The identity of mechanosensitive channels that underlie somatosensory touch transduction is still a mystery. One promising mechanotransduction candidate is the Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel. To determine the role of TRPA1 in the generation of mechanically-sensitive currents, we used dorsal root ganglion (DRG) neuron cultures from adult mice and applied rapid focal mechanical stimulation (indentation) to the soma membrane. Small neurons (diameter <27 µm) were studied because TRPA1 is functionally present in these neurons which largely give rise to C-fiber afferents in vivo. Small neurons were classified by isolectin B4 binding

    Neural coding in a single sensory neuron controlling opposite seeking behaviours in Caenorhabditis elegans

    Get PDF
    Unveiling the neural codes for intricate behaviours is a major challenge in neuroscience. The neural circuit for the temperature-seeking behaviour of Caenorhabditis elegans is an ideal system to dissect how neurons encode sensory information for the execution of behavioural output. Here we show that the temperature-sensing neuron AFD transmits both stimulatory and inhibitory neural signals to a single interneuron AIY. In this circuit, a calcium concentration threshold in AFD acts as a switch for opposing neural signals that direct the opposite behaviours. Remote control of AFD activity, using a light-driven ion pump and channel, reveals that diverse reduction levels of AFD activity can generate warm- or cold-seeking behaviour. Calcium imaging shows that AFD uses either stimulatory or inhibitory neuronal signalling onto AIY, depending on the calcium concentration threshold in AFD. Thus, dual neural regulation in opposite directions is directly coupled to behavioural inversion in the simple neural circuit

    Drosophila Nociceptors Mediate Larval Aversion to Dry Surface Environments Utilizing Both the Painless TRP Channel and the DEG/ENaC Subunit, PPK1

    Get PDF
    A subset of sensory neurons embedded within the Drosophila larval body wall have been characterized as high-threshold polymodal nociceptors capable of responding to noxious heat and noxious mechanical stimulation. They are also sensitized by UV-induced tissue damage leading to both thermal hyperalgesia and allodynia very similar to that observed in vertebrate nociceptors. We show that the class IV multiple-dendritic(mdIV) nociceptors are also required for a normal larval aversion to locomotion on to a dry surface environment. Drosophila melanogaster larvae are acutely susceptible to desiccation displaying a strong aversion to locomotion on dry surfaces severely limiting the distance of movement away from a moist food source. Transgenic inactivation of mdIV nociceptor neurons resulted in larvae moving inappropriately into regions of low humidity at the top of the vial reflected as an increased overall pupation height and larval desiccation. This larval lethal desiccation phenotype was not observed in wild-type controls and was completely suppressed by growth in conditions of high humidity. Transgenic hyperactivation of mdIV nociceptors caused a reciprocal hypersensitivity to dry surfaces resulting in drastically decreased pupation height but did not induce the writhing nocifensive response previously associated with mdIV nociceptor activation by noxious heat or harsh mechanical stimuli. Larvae carrying mutations in either the Drosophila TRP channel, Painless, or the degenerin/epithelial sodium channel subunit Pickpocket1(PPK1), both expressed in mdIV nociceptors, showed the same inappropriate increased pupation height and lethal desiccation observed with mdIV nociceptor inactivation. Larval aversion to dry surfaces appears to utilize the same or overlapping sensory transduction pathways activated by noxious heat and harsh mechanical stimulation but with strikingly different sensitivities and disparate physiological responses

    Regulators of AWC-Mediated Olfactory Plasticity in Caenorhabditis elegans

    Get PDF
    While most sensory neurons will adapt to prolonged stimulation by down-regulating their responsiveness to the signal, it is not clear which events initiate long-lasting sensory adaptation. Likewise, we are just beginning to understand how the physiology of the adapted cell is altered. Caenorhabditis elegans is inherently attracted to specific odors that are sensed by the paired AWC olfactory sensory neurons. The attraction diminishes if the animal experiences these odors for a prolonged period of time in the absence of food. The AWC neuron responds acutely to odor-exposure by closing calcium channels. While odortaxis requires a Gα subunit protein, cGMP-gated channels, and guanylyl cyclases, adaptation to prolonged odor exposure requires nuclear entry of the cGMP-dependent protein kinase, EGL-4. We asked which candidate members of the olfactory signal transduction pathway promote nuclear entry of EGL-4 and which molecules might induce long-term adaptation downstream of EGL-4 nuclear entry. We found that initiation of long-term adaptation, as assessed by nuclear entry of EGL-4, is dependent on G-protein mediated signaling but is independent of fluxes in calcium levels. We show that long-term adaptation requires polyunsaturated fatty acids (PUFAs) that may act on the transient receptor potential (TRP) channel type V OSM-9 downstream of EGL-4 nuclear entry. We also present evidence that high diacylglycerol (DAG) levels block long-term adaptation without affecting EGL-4 nuclear entry. Our analysis provides a model for the process of long-term adaptation that occurs within the AWC neuron of C. elegans: G-protein signaling initiates long-lasting olfactory adaptation by promoting the nuclear entry of EGL-4, and once EGL-4 has entered the nucleus, processes such as PUFA activation of the TRP channel OSM-9 may dampen the output of the AWC neuron

    The brain is a DJ using neuropeptides as sensory crossfaders

    Get PDF
    Sensory loss induces cross-modal plasticity, often resulting in altered performance in remaining sensory modalities. Whereas much is known about the macroscopic mechanisms underlying cross-modal plasticity, only scant information exists about its cellular and molecular underpinnings. We found that Caenorhabditis elegans nematodes deprived of a sense of body touch exhibit various changes in behavior, associated with other unimpaired senses. We focused on one such behavioral alteration, enhanced odor sensation, and sought to reveal the neuronal and molecular mechanisms that translate mechanosensory loss into improved olfactory acuity. To this end, we analyzed in mechanosensory mutants food-dependent locomotion patterns that are associated with olfactory responses and found changes that are consistent with enhanced olfaction. The altered locomotion could be reversed in adults by optogenetic stimulation of the touch receptor (mechanosensory) neurons. Furthermore, we revealed that the enhanced odor response is related to a strengthening of inhibitory AWC→AIY synaptic transmission in the olfactory circuit. Consistently, inserting in this circuit an engineered electrical synapse that diminishes AWC inhibition of AIY counteracted the locomotion changes in touch-deficient mutants. We found that this cross-modal signaling between the mechanosensory and olfactory circuits is mediated by neuropeptides, one of which we identified as FLP-20. Our results indicate that under normal function, ongoing touch receptor neuron activation evokes FLP-20 release, suppressing synaptic communication and thus dampening odor sensation. In contrast, in the absence of mechanosensory input, FLP-20 signaling is reduced, synaptic suppression is released, and this enables enhanced olfactory acuity; these changes are long lasting and do not represent ongoing modulation, as revealed by optogenetic experiments. Our work adds to a growing literature on the roles of neuropeptides in cross-modal signaling, by showing how activity-dependent neuropeptide signaling leads to specific cross-modal plastic changes in neural circuit connectivity, enhancing sensory performance.status: publishe

    Cross-Modulation of Homeostatic Responses to Temperature, Oxygen and Carbon Dioxide inC. elegans

    Get PDF
    Different interoceptive systems must be integrated to ensure that multiple homeostatic insults evoke appropriate behavioral and physiological responses. Little is known about how this is achieved. Using C. elegans, we dissect cross-modulation between systems that monitor temperature, O₂ and CO₂. CO₂ is less aversive to animals acclimated to 15°C than those grown at 22°C. This difference requires the AFD neurons, which respond to both temperature and CO₂ changes. CO₂ evokes distinct AFD Ca²⁺ responses in animals acclimated at 15°C or 22°C. Mutants defective in synaptic transmission can reprogram AFD CO₂ responses according to temperature experience, suggesting reprogramming occurs cell autonomously. AFD is exquisitely sensitive to CO₂. Surprisingly, gradients of 0.01% CO₂/second evoke very different Ca²⁺ responses from gradients of 0.04% CO₂/second. Ambient O₂ provides further contextual modulation of CO₂ avoidance. At 21% O₂ tonic signalling from the O₂-sensing neuron URX inhibits CO₂ avoidance. This inhibition can be graded according to O₂ levels. In a natural wild isolate, a switch from 21% to 19% O₂ is sufficient to convert CO₂ from a neutral to an aversive cue. This sharp tuning is conferred partly by the neuroglobin GLB-5. The modulatory effects of O₂ on CO₂ avoidance involve the RIA interneurons, which are post-synaptic to URX and exhibit CO₂-evoked Ca²⁺ responses. Ambient O₂ and acclimation temperature act combinatorially to modulate CO₂ responsiveness. Our work highlights the integrated architecture of homeostatic responses in C. elegans

    Physiological Basis of Tingling Paresthesia Evokedby Hydroxy- -Sanshool

    Full text link
    Job file for the creation/design of stained glass from either the Charles J. Connick Studio (1912-1945) or the Charles J. Connick Associates studio (1945-1986). The job file contains a job number, location information, date of completion, size, contact information, price, and a description of the project. This particular job file contains information on a job located at: Easthampton, Massachusetts. Immaculate Conception Church
    corecore