2,005 research outputs found

    Is “Unconsummated Marriage” still an appropriate term? A snapshot of reality

    Get PDF
    The most shared definition of Unconsummated Marriage (UM) refers to “the failure to perform successful sexual intercourse at the beginning of the marriage. UM usually occurs in the first few nights of marriage and so it is frequently referred to as “honeymoon impotence” or “wedding night impotence”. In the Middle-Eastern (MES) and Western (WS) societies, sexuality follows different patterns in terms of meaning and rules. Moreover the evolution of societies all around the world created new contexts and kinds of relationship. This could hamper a correct taxonomy of such sexual dysfunction where a social variable seems crucial. Aim: To analyze and review data on UM all around the world, to understand if in different societies it refers to the same situation. Method: A review of published literature on UM from 1970 to date, was conducted. Results: Substantial difference emerged from MES to WS. In MES, sexuality is allowable only in marriage, while in WS sexuality and relationship are not strongly linked. This could suggest that the term “marriage” is unable to cover the phenomenon in such different countries. Moreover, the average time before the consultation, causal attribution and prevalence are very different in Western and Middle Eastern countries. Conclusion: We found that the term “first attempts dysfunction” could be better used to describe male, female or both difficulties related to ignorance about sexuality or state/performance anxiety. On the other hand over the individual category of sexual dysfunctions, we suggest a new term as “Unconsummated relationship”, where individual difficulties toward sexuality are involved creating a couple’s dysfunction. Keywords: Unconsummated marriage; Honeymoon impotence; White marriage; Vaginismus; Infertilit

    Convergence of Wnt signalling on the HNF4a-driven transcription in controlling liver zonation

    Get PDF
    BACKGROUND & AIMS: In each hepatocyte, the specific repertoire of gene expression is influenced by its exact location along the portocentrovenular axis of the hepatic lobule and provides a reason for the liver functions compartmentalization defined "metabolic zonation." So far, few molecular players controlling genetic programs of periportal (PP) and perivenular (PV) hepatocytes have been identified; the elucidation of zonation mechanisms remains a challenge for experimental hepatology. Recently, a key role in induction and maintenance of the hepatocyte heterogeneity has been ascribed to Wnt/beta-catenin pathway. We sought to clarify how this wide-ranging stimulus integrates with hepatocyte specificity. METHODS: Reverse transcriptase polymerase chain reaction (RT-PCR) allowed the transcriptional profiling of hepatocytes derived from in vitro differentiation of liver stem cells. The GSK3beta inhibitor 6-bromoindirubin-3'-oxime (BIO) was used for beta-catenin stabilization. Co-immunoprecipitations were used to study biochemical protein interactions while ChIP assays allowed the in vivo inspection of PV and PP genes regulatory regions. RESULTS: We found that spontaneous differentiation of liver stem cells gives rise to PP hepatocytes that, after Wnt pathway activation, switch into PV hepatocytes. Next, we showed that the Wnt downstream player LEF1 interacts with the liver-enriched transcriptional factor HNF4alpha. Finally, we unveiled that the BIO induced activation of PV genes correlates with LEF1 binding to both its own and HNF4alpha consensus, and the repression of PP genes correlates with HNF4alpha displacement from its own consensus. CONCLUSION: Our data show a direct and hitherto unknown convergence of the canonical Wnt signaling on the HNF4alpha-driven transcription providing evidences of a mechanism controlling liver zonated gene expression

    Timing of Invasion by Africanized Bees Coincides with Local Extinction of a Specialized Pollinator of a Rare Poppy in Utah, USA

    Get PDF
    The introduction of exotic species can have profound impacts on mutualisms between native species in invaded areas. However, determining whether a new invader has impacted native species depends on accurately reconstructing the invasion timing. The arrival of Africanized honey bees (AHB) in southern Utah at some point between 1994 and 2011 has recently been implicated in the local extinction of Perdita meconis, a native specialist pollinator of an endangered poppy, Arctomecon humilis. Although AHBs were purportedly first detected in southern Utah in 2008, their presence in nearby Nevada, Arizona, and New Mexico by 1998–2001 suggests that they may have been present in Utah much earlier. We refined the arrival date of AHBs in southern Utah by using a molecular marker to determine maternal ancestry of museum specimens collected between 2000 and 2008. We found that AHBs were present in southern Utah from 2000 onwards, advancing the arrival date of this invader by at least 8 years. This lends credence to the hypothesis that AHBs played a critical role in the local extinction of P. meconis in Utah. This work also highlights the importance of vouchering even common species such as honey bees in museum collections to serve future research needs

    Bio-ethylene Production: from Reaction Kinetics to Plant Scale

    Get PDF
    Ethylene production from renewable bio-ethanol has been recently proposed as sustainable alternative to fossil sources. The possibility to exploit diluted bioethanol as less expensive feedstock was studied both experimentally, using different catalysts at lab-level, and through preliminary process design. In this work, a full-scale plant simulation is presented, built on a detailed reaction kinetics. Rate equations for the primary and side reactions are revised and implemented with a process simulation package, using a range of thermodynamic methods as best suited to the different process stages. The catalyst loading within the reactor can be effectively distributed according to the underlying kinetic, and the overall plant layout let foresee the best routes for the material recycles. The detailed reaction modeling and the choice of the thermodynamic models are essential to obtain reliable predictions. Setting a target yield of 105 t/year of polymer-grade ethylene, the reactive section must be fed with 76 t/h of diluted ethanol and operated at 400 \ub0C. 85% of the fed carbon mass is found as ethylene, 12% remains as ethanol and a 2% as longer olefins. Considering also the recycle of ethanol the carbon conversion and recovery increases to the value of 97.6%. The global ethylene recovery is 90.7%: most of the loss takes place in the last stage due to the non-condensable purification and to the adopted strategy of having low reflux ratio \u2013 and then a closed cryogenic balance \u2013 in the last purification column. Full heat integration of the process with upstream bioethanol production and purification sections allows process intensification and consistent energy savings. This newly designed process sets the sustainable ethylene production on a detailed and reassessed computational basis and has been assessed as for Capital and Operational Expenditures and Total Investment costs

    Role of Heme and Heme-Proteins in Trypanosomatid Essential Metabolic Pathways

    Get PDF
    Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi), leishmaniasis (Leishmania spp.), and African trypanosomiasis (Trypanosoma brucei). Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents

    Hepatitis C virus production requires apolipoprotein A-I and affects its association with nascent low-density lipoproteins

    Get PDF
    Background/aims The life cycle of hepatitis C virus (HCV) is intimately linked to the lipid metabolism of the host. In particular, HCV exploits the metabolic machinery of the lipoproteins in several steps of its life cycle such as circulation in the bloodstream, cell attachment and entry, assembly and release of viral particles. However, the details of how HCV interacts with and influences the metabolism of the host lipoproteins are not well understood. A study was undertaken to investigate whether HCV directly affects the protein composition of host circulating lipoproteins. Methods A proteomic analysis of circulating very low-, low- and high-density lipoproteins (VLDL, LDL and HDL), isolated from either in-treatment naive HCV-infected patients or healthy donors (HD), was performed using two-dimensional gel electrophoresis and tandem mass spectrometry (MALDI-TOF/TOF). The results obtained were further investigated using in vitro models of HCV infection and replication. Results A decreased level of apolipoprotein A-I (apoA-I) was found in the LDL fractions of HCV-infected patients. This result was confirmed by western blot and ELISA analysis. HCV cellular models (JFH1 HCV cell culture system (HCVcc) and HCV subgenomic replicons) showed that the decreased apoA-I/LDL association originates from hepatic biogenesis rather than lipoprotein catabolism occurring in the circulation, and is not due to a downregulation of the apoA-I protein concentration. The sole non-structural viral proteins were sufficient to impair the apoA-I/LDL association. Functional evidence was obtained for involvement of apoA-I in the viral life cycle such as RNA replication and virion production. The specific siRNA-mediated downregulation of apoA-I led to a reduction in both HCV RNA and viral particle levels in culture. Conclusions This study shows that HCV induces lipoprotein structural modification and that its replication and production are linked to the host lipoprotein metabolism, suggesting apoA-I as a new possible target for antiviral therapy

    SILAC labeling coupled to shotgun proteomics analysis of membrane proteins of liver stem/hepatocyte allows to candidate the inhibition of TGF-beta pathway as causal to differentiation

    Get PDF
    Background: Despite extensive research on hepatic cells precursors and their differentiated states, much remains to be learned about the mechanism underlying the self-renewal and differentiation.Results: We apply the SILAC (stable isotope labeling by amino acids in cell culture) approach to quantitatively compare the membrane proteome of the resident liver stem cells (RLSCs) and their progeny spontaneously differentiated into epithelial/hepatocyte (RLSCdH). By means of nanoLC-MALDI-TOF/TOF approach, we identified and quantified 248 membrane proteins and 57 of them were found modulated during hepatocyte differentiation. Functional clustering of differentially expressed proteins by Ingenuity Pathway Analysis revealed that the most of membrane proteins found to be modulated are involved in cell-to-cell signaling/interaction pathways. Moreover, the upstream prediction analysis of proteins involved in cell-to-cell signaling and interaction unveiled that the activation of the mesenchymal to epithelial transition (MET), by the repression of TGFB1/Slug signaling, may be causal to hepatocyte differentiation.Conclusions: Taken together, this study increases the understanding of the underlying mechanisms modulating the complex biological processes of hepatic stem cell proliferation and differentiation. © 2014 Montaldo et al.; licensee BioMed Central Ltd
    corecore