35 research outputs found

    Jdp2 downregulates Trp53 transcription to promote leukaemogenesis in the context of Trp53 heterozygosity

    Get PDF
    We performed a genetic screen in mice to identify candidate genes that are associated with leukaemogenesis in the context of Trp53 heterozygosity. To do this we generated Trp53 heterozygous mice carrying the T2/Onc transposon and SB11 transposase alleles to allow transposon-mediated insertional mutagenesis to occur. From the resulting leukaemias/lymphomas that developed in these mice, we identified nine loci that are potentially associated with tumour formation in the context of Trp53 heterozygosity, including AB041803 and the Jun dimerization protein 2 (Jdp2). We show that Jdp2 transcriptionally regulates the Trp53 promoter, via an atypical AP-1 site, and that Jdp2 expression negatively regulates Trp53 expression levels. This study is the first to identify a genetic mechanism for tumour formation in the context of Trp53 heterozygosity

    ERIC recommendations on TP53 mutation analysis in chronic lymphocytic leukemia

    No full text
    Recent evidence suggests that - in addition to 17p deletion - TP53 mutation is an independent prognostic factor in chronic lymphocytic leukemia (CLL). Data from retrospective analyses and prospective clinical trials show that 3c5% of untreated CLL patients with treatment indication have a TP53 mutation in the absence of 17p deletion. These patients have a poor response and reduced progression-free survival and overall survival with standard treatment approaches. These data suggest that TP53 mutation testing warrants integration into current diagnostic work up of patients with CLL. There are a number of assays to detect TP53 mutations, which have respective advantages and shortcomings. Direct Sanger sequencing of exons 4-9 can be recommended as a suitable test to identify TP53 mutations for centers with limited experience with alternative screening methods. Recommendations are provided on standard operating procedures, quality control, reporting and interpretation. Patients with treatment indications should be investigated for TP53 mutations in addition to the work-up recommended by the International workshop on CLL guidelines. Patients with TP53 mutation may be considered for allogeneic stem cell transplantation in first remission. Alemtuzumab-based regimens can yield a substantial proportion of complete responses, although of short duration. Ideally, patients should be treated within clinical trials exploring new therapeutic agents

    Assessment of p53 and ATM functionality in chronic lymphocytic leukemia by multiplex ligation-dependent probe amplification

    No full text
    The ATM-p53 DNA-damage response (DDR) pathway has a crucial role in chemoresistance in CLL, as indicated by the adverse prognostic impact of genetic aberrations of TP53 and ATM. Identifying and distinguishing TP53 and ATM functional defects has become relevant as epigenetic and posttranscriptional dysregulation of the ATM/p53 axis is increasingly being recognized as the underlying cause of chemoresistance. Also, specific treatments sensitizing TP53- or ATM-deficient CLL cells are emerging. We therefore developed a new ATM-p53 functional assay with the aim to (i) identify and (ii) distinguish abnormalities of TP53 versus ATM and (iii) enable the identification of additional defects in the ATM-p53 pathway. Reversed transcriptase multiplex ligation-dependent probe amplification (RT-MLPA) was used to measure ATM and/or p53-dependent genes at the RNA level following DNA damage using irradiation. Here, we showed that this assay is able to identify and distinguish three subgroups of CLL tumors (i.e., TP53-defective, ATM-defective and WT) and is also able to detect additional samples with a defective DDR, without molecular aberrations in TP53 and/or ATM. These findings make the ATM-p53 RT-MLPA functional assay a promising prognostic tool for predicting treatment responses in CLL

    Targeted next-generation sequencing in chronic lymphocytic leukemia: A high-throughput yet tailored approach will facilitate implementation in a clinical setting

    No full text
    Next-generation sequencing has revealed novel recurrent mutations in chronic lymphocytic leukemia, particularly in patients with aggressive disease. Here, we explored targeted re-sequencing as a novel strategy to assess the mutation status of genes with prognostic potential. To this end, we utilized HaloPlex targeted enrichment technology and designed a panel including nine genes: ATM, BIRC3, MYD88, NOTCH1,SF3B1 and TP53, which have been linked to the prognosis of chronic lymphocytic leukemia, and KLHL6, POT1 and XPO1, which are less characterized but were found to be recurrently mutated in various sequencing studies. A total of 188 chronic lymphocytic leukemia patients with poor prognostic features (unmutated IGHV, n=137;IGHV3-21 subset #2, n=51) were sequenced on the HiSeq 2000 and data were analyzed using well-established bioinformatics tools. Using a conservative cutoff of 10% for the mutant allele, we found that 114/180 (63%) patients carried at least one mutation, with mutations in ATM, BIRC3, NOTCH1, SF3B1 and TP53 accounting for 149/177 (84%) of all mutations. We selected 155 mutations for Sanger validation (variant allele frequency, 10–99%) and 93% (144/155) of mutations were confirmed; notably, all 11 discordant variants had a variant allele frequency between 11–27%, hence at the detection limit of conventional Sanger sequencing. Technical precision was assessed by repeating the entire HaloPlex procedure for 63 patients; concordance was found for 77/82 (94%) mutations. In summary, this study demonstrates that targeted next-generation sequencing is an accurate and reproducible technique potentially suitable for routine screening, eventually as a stand-alone test without the need for confirmation by Sanger sequencing. © 2015 Ferrata Storti Foundation

    ERIC recommendations on TP53 mutation analysis in chronic lymphocytic leukemia.

    No full text
    Recent evidence suggests that - in addition to 17p deletion - TP53 mutation is an independent prognostic factor in chronic lymphocytic leukemia (CLL). Data from retrospective analyses and prospective clinical trials show that similar to 5% of untreated CLL patients with treatment indication have a TP53 mutation in the absence of 17p deletion. These patients have a poor response and reduced progression-free survival and overall survival with standard treatment approaches. These data suggest that TP53 mutation testing warrants integration into current diagnostic work up of patients with CLL. There are a number of assays to detect TP53 mutations, which have respective advantages and shortcomings. Direct Sanger sequencing of exons 4 - 9 can be recommended as a suitable test to identify TP53 mutations for centers with limited experience with alternative screening methods. Recommendations are provided on standard operating procedures, quality control, reporting and interpretation. Patients with treatment indications should be investigated for TP53 mutations in addition to the work-up recommended by the International workshop on CLL guidelines. Patients with TP53 mutation may be considered for allogeneic stem cell transplantation in first remission. Alemtuzumab-based regimens can yield a substantial proportion of complete responses, although of short duration. Ideally, patients should be treated within clinical trials exploring new therapeutic agent
    corecore