267 research outputs found

    Investigation of Single Boron Acceptors at the Cleaved Si:B (111) Surface

    Full text link
    The cleaved and (2 x 1) reconstructed (111) surface of p-type Si is investigated by scanning tunneling microscopy (STM). Single B acceptors are identified due to their characteristic voltage-dependent contrast which is explained by a local energetic shift of the electronic density of states caused by the Coulomb potential of the negatively charged acceptor. In addition, detailed analysis of the STM images shows that apparently one orbital is missing at the B site at sample voltages of 0.4 - 0.6 V, corresponding to the absence of a localized dangling-bond state. Scanning tunneling spectroscopy confirms a strongly altered density of states at the B atom due to the different electronic structure of B compared to Si.Comment: 6 pages, 7 figure

    Ein neues Verfahren für namensbasierte Zufallsstichproben von Migranten

    Get PDF
    The set of best methods for sampling mi- grant populations includes name-based sampling. So far this is done using either ad-hoc lists or onomastic dictionaries for the classi cation of names. This paper pro- poses a new name-based procedure, which uses a Bayes-classi er for the n-grams of the name. The new procedure is fault-tol- erant of alternate spellings, and also allows the classi cation of names that are not found in dictionaries. It was tested using the names of about 1.600 foreigners in the PASS panel. Finally, a CATI survey based on the new method in Hesse is described

    The pre-WDVV ring of physics and its topology

    Full text link
    We show how a simplicial complex arising from the WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equations of string theory is the Whitehouse complex. Using discrete Morse theory, we give an elementary proof that the Whitehouse complex Δn\Delta_n is homotopy equivalent to a wedge of (n2)!(n-2)! spheres of dimension n4n-4. We also verify the Cohen-Macaulay property. Additionally, recurrences are given for the face enumeration of the complex and the Hilbert series of the associated pre-WDVV ring.Comment: 13 pages, 4 figures, 2 table

    Critical Behavior of the Conductivity of Si:P at the Metal-Insulator Transition under Uniaxial Stress

    Full text link
    We report new measurements of the electrical conductivity sigma of the canonical three-dimensional metal-insulator system Si:P under uniaxial stress S. The zero-temperature extrapolation of sigma(S,T -> 0) ~\S - S_c\^mu shows an unprecidentedly sharp onset of finite conductivity at S_c with an exponent mu = 1. The value of mu differs significantly from that of earlier stress-tuning results. Our data show dynamical sigma(S,T) scaling on both metallic and insulating sides, viz. sigma(S,T) = sigma_c(T) F(\S - S_cT^y) where sigma_c(T) is the conductivity at the critical stress S_c. We find y = 1/znu = 0.34 where nu is the correlation-length exponent and z the dynamic critical exponent.Comment: 5 pages, 4 figure

    Effects of Magnetic Order on the Upper Critical Field of UPt3_3

    Full text link
    I present a Ginzburg-Landau theory for hexagonal oscillations of the upper critical field of UPt3_3 near TcT_c. The model is based on a 2D2D representation for the superconducting order parameter, η=(η1,η2)\vec{\eta}=(\eta_1,\eta_2), coupled to an in-plane AFM order parameter, ms\vec{m}_s. Hexagonal anisotropy of Hc2H_{c2} arises from the weak in-plane anisotropy energy of the AFM state and the coupling of the superconducting order parameter to the staggered field. The model explains the important features of the observed hexagonal anisotropy [N. Keller, {\it et al.}, Phys. Rev. Lett. {\bf 73}, 2364 (1994).] including: (i) the small magnitude, (ii) persistence of the oscillations for TTcT\rightarrow T_c, and (iii) the change in sign of the oscillations for T>TT> T^{*} and T<TT< T^{*} (the temperature at the tetracritical point). I also show that there is a low-field crossover (observable only very near TcT_c) below which the oscillations should vanish.Comment: 9 pages in a RevTex (3.0) file plus 2 postscript figures (uuencoded). Submitted to Physical Review B (December 20, 1994)

    Unconventional Pairing in Heavy Fermion Metals

    Full text link
    The Fermi-liquid theory of superconductivity is applicable to a broad range of systems that are candidates for unconventional pairing. Fundamental differences between unconventional and conventional anisotropic superconductors are illustrated by the unique effects that impurities have on the low-temperature transport properties of unconventional superconductors. For special classes of unconventional superconductors the low-temperature transport coefficients are {\it universal}, i.e. independent of the impurity concentration and scattering phase shift. The existence of a universal limit depends on the symmetry of the order parameter and is achieved at low temperatures kBTγΔ0k_B T \ll \gamma \ll \Delta_0, where γ\gamma is the bandwidth of the impurity induced Andreev bound states. In the case of UPt3_3 thermal conductivity measurements favor an E1gE_{1g} or E2uE_{2u} ground state. Measurements at ultra-low temperatures should distinguish different pairing states.Comment: 8 pages in a LaTex (3.0) file plus 5 Figures in PostScript. To appear in the Proceedings of the XXI International Conference on Low Temperature Physics held in Prague, 8-14 August 199

    Influence of a magnetic field on the antiferromagnetic order in UPt_3

    Full text link
    A neutron diffraction experiment was performed to investigate the effect of a magnetic field on the antiferromagnetic order in the heavy fermion superconductor UPt_3. Our results show that a field in the basal plane of up to 3.2 Tesla, higher than H_c2(0), has no effect: it can neither select a domain nor rotate the moment. This has a direct impact on current theories for the superconducting phase diagram based on a coupling to the magnetic order.Comment: 7 pages, RevTeX, 3 postscript figures, submitted to Phys. Rev.

    E1gE_{1g} model of superconducting UPt3_3

    Full text link
    The phase diagram of superconducting UPt3_3 is explained in a Ginzburg-Landau theory starting from the hypothesis that the order parameter is a pseudo-spin singlet which transforms according to the E1gE_{1g} representation of the D6hD_{6h} point group. We show how to compute the positions of the phase boundaries both when the applied field is in the basal plane and when it is along the c-axis. The experimental phase diagrams as determined by longitudinal sound velocity data can be fit using a single set of parameters. In particular the crossing of the upper critical field curves for the two field directions and the apparent isotropy of the phase diagram are reproduced. The former is a result of the magnetic properties of UPt3_3 and their contribution to the free energy in the superconducting state. The latter is a consequence of an approximate particle-hole symmetry. Finally we extend the theory to finite pressure and show that, in contrast to other models, the E1gE_{1g} model explains the observed pressure dependence of the phase boundaries.Comment: RevTex, 29 pages, 18 PostScript figures in a uuencoded, gzipped tar file. PostScript version of paper, tar file of PostScript figures and individual PostScript figures are also available via anonymous ftp at ftp://nym.physics.wisc.edu/anonymou/papers/upt3
    corecore