111 research outputs found

    Decoherence and Quantum-Classical Master Equation Dynamics

    Full text link
    The conditions under which quantum-classical Liouville dynamics may be reduced to a master equation are investigated. Systems that can be partitioned into a quantum-classical subsystem interacting with a classical bath are considered. Starting with an exact non-Markovian equation for the diagonal elements of the density matrix, an evolution equation for the subsystem density matrix is derived. One contribution to this equation contains the bath average of a memory kernel that accounts for all coherences in the system. It is shown to be a rapidly decaying function, motivating a Markovian approximation on this term in the evolution equation. The resulting subsystem density matrix equation is still non-Markovian due to the fact that bath degrees of freedom have been projected out of the dynamics. Provided the computation of non-equilibrium average values or correlation functions is considered, the non-Markovian character of this equation can be removed by lifting the equation into the full phase space of the system. This leads to a trajectory description of the dynamics where each fictitious trajectory accounts for decoherence due to the bath degrees of freedom. The results are illustrated by computations of the rate constant of a model nonadiabatic chemical reaction.Comment: 13 pages, 6 figures, revision includes: Added references on mixed quantum-classical Liouville theory, and some minor details that address the comments of the reviewe

    Tests of light-lepton universality in angular asymmetries of B0DνB^0 \to D^{*-} \ell \nu decays

    Get PDF
    We present the first comprehensive tests of light-lepton universality in the angular distributions of semileptonic \Bz-meson decays to charged spin-1 charmed mesons. We measure five angular-asymmetry observables as functions of the decay recoil that are sensitive to lepton-universality-violating contributions. We use events where one neutral \B is fully reconstructed in \PUpsilonFourS{} \to\B\overline{B} decays in data corresponding to \lumion integrated luminosity from electron-positron collisions collected with the \belletwo detector. We find no significant deviation from the standard model expectations

    Measurement of CPCP asymmetries in B0ϕKS0B^0\to \phi K^0_S decays with Belle II

    Full text link
    We present a measurement of time-dependent rate asymmetries in B0ϕKS0B^0\to \phi K^0_S decays to search for non-standard-model physics in bqqsb\to q \overline{q}s transitions. The data sample is collected with the Belle II detector at the SuperKEKB asymmetric-energy e+ee^{+}e^{-} collider in 2019-2022 and contains (387±6)×106(387\pm 6)\times 10^6 bottom-antibottom mesons from Υ(4S)\Upsilon(4S) resonance decays. We reconstruct 162±17162\pm17 signal events and extract the charge-parity (CPCP) violating parameters from a fit to the distribution of the proper-decay-time difference of the two BB mesons. The measured direct and mixing-induced CPCP asymmetries are A=0.31±0.20±0.05A=0.31\pm0.20\pm0.05 and S=0.54±0.260.08+0.06S=0.54\pm0.26^{+0.06}_{-0.08}, respectively, where the first uncertainties are statistical and the second are systematic. The results are compatible with the CPCP asymmetries observed in bccsb\to c\overline{c} s transitions

    Measurement of branching fractions and direct CPCP asymmetries for BKπB \to K\pi and BππB\to\pi\pi decays at Belle II

    Full text link
    We report measurements of the branching fractions and direct CP\it{CP} asymmetries of the decays B0K+πB^0 \to K^+ \pi^-, B+K+π0B^+ \to K^+ \pi^0, B+K0π+B^+ \to K^0 \pi^+, and B0K0π0B^0 \to K^0 \pi^0, and use these for testing the standard model through an isospin-based sum rule. In addition, we measure the branching fraction and direct CP\it{CP} asymmetry of the decay B+π+π0B^+ \to \pi^+\pi^0 and the branching fraction of the decay B0π+πB^0 \to \pi^+\pi^-. The data are collected with the Belle II detector from e+ee^+e^- collisions at the Υ(4S)\Upsilon(4S) resonance produced by the SuperKEKB asymmetric-energy collider and contain 387×106387\times 10^6 bottom-antibottom meson pairs. Signal yields are determined in two-dimensional fits to background-discriminating variables, and range from 500 to 3900 decays, depending on the channel. We obtain 0.03±0.13±0.04-0.03 \pm 0.13 \pm 0.04 for the sum rule, in agreement with the standard model expectation of zero and with a precision comparable to the best existing determinations

    Measurement of the τ\tau-lepton mass with the Belle~II experiment

    Full text link
    We present a measurement of the τ\tau-lepton mass using a sample of about 175 million e+eτ+τe^+e^- \to \tau^+\tau^- events collected with the Belle II detector at the SuperKEKB e+ee^+e^- collider at a center-of-mass energy of 10.579GeV10.579\,\mathrm{Ge\kern -0.1em V}. This sample corresponds to an integrated luminosity of 190fb1190\,\mathrm{fb^{-1}}. We use the kinematic edge of the τ\tau pseudomass distribution in the decay τππ+πντ{\tau^-\to\pi^-\pi^+\pi^-\nu_\tau} and measure the τ\tau mass to be 1777.09±0.08±0.11MeV ⁣/c21777.09 \pm 0.08 \pm 0.11 \,\mathrm{Me\kern -0.1em V\!/c^2}, where the first uncertainty is statistical and the second systematic. This result is the most precise to date

    Search for an invisible ZZ^\prime in a final state with two muons and missing energy at Belle II

    Get PDF
    The LμLτL_{\mu}-L_{\tau} extension of the standard model predicts the existence of a lepton-flavor-universality-violating ZZ^{\prime} boson that couples only to the heavier lepton families. We search for such a ZZ^\prime through its invisible decay in the process e+eμ+μZe^+ e^- \to \mu^+ \mu^- Z^{\prime}. We use a sample of electron-positron collisions at a center-of-mass energy of 10.58GeV collected by the Belle II experiment in 2019-2020, corresponding to an integrated luminosity of 79.7fb1^{-1}. We find no excess over the expected standard-model background. We set 90%\%-confidence-level upper limits on the cross section for this process as well as on the coupling of the model, which ranges from 3×1033 \times 10^{-3} at low ZZ^{\prime} masses to 1 at ZZ^{\prime} masses of 8GeV/c2GeV/c^{2}

    Measurement of the Λc+\Lambda_c^+ lifetime

    Full text link
    An absolute measurement of the Λc+\Lambda^{+}_c lifetime is reported using Λc+pKπ+\Lambda_c^+\rightarrow pK^-\pi^+ decays in events reconstructed from data collected by the Belle II experiment at the SuperKEKB asymmetric-energy electron-positron collider. The total integrated luminosity of the data sample, which was collected at center-of-mass energies at or near the Υ(4S)\Upsilon(4S) resonance, is 207.2~\mbox{fb}^{-1}. The result, τ(Λc+)=203.20±0.89(stat)±0.77(syst)\tau(\Lambda^{+}_c) = 203.20 \pm 0.89 \,\mathrm{(stat)} \pm 0.77 \,\mathrm{(syst)} fs, is the most precise measurement to date and is consistent with previous determinations.Comment: Accepted for publication in PR

    Search for a τ+τ\tau^+\tau^- resonance in e+eμ+μτ+τe^{+}e^{-}\rightarrow \mu^{+}\mu^{-} \tau^+\tau^- events with the Belle II experiment

    Get PDF
    We report the first search for a non-standard-model resonance decaying into τ\tau pairs in e+eμ+μτ+τe^{+}e^{-}\rightarrow \mu^{+}\mu^{-} \tau^+\tau^- events in the 3.6-10 GeV/c2c^{2} mass range. We use a 62.8 fb1^{-1} sample of e+ee^+e^- collisions collected at a center-of-mass energy of 10.58 GeV by the Belle II experiment at the SuperKEKB collider. The analysis probes three different models predicting a spin-1 particle coupling only to the heavier lepton families, a Higgs-like spin-0 particle that couples preferentially to charged leptons (leptophilic scalar), and an axion-like particle, respectively. We observe no evidence for a signal and set exclusion limits at 90% confidence level on the product of cross section and branching fraction into τ\tau pairs, ranging from 0.7 fb to 24 fb, and on the couplings of these processes. We obtain world-leading constraints on the couplings for the leptophilic scalar model for masses above 6.5 GeV/c2c^2 and for the axion-like particle model over the entire mass range

    Observation of BD()KKS0{B\to D^{(*)} K^- K^{0}_S} decays using the 2019-2022 Belle II data sample

    Full text link
    We present a measurement of the branching fractions of four B0,D()+,0KKS0B^{0,-}\to D^{(*)+,0} K^- K^{0}_S decay modes. The measurement is based on data from SuperKEKB electron-positron collisions at the Υ(4S)\Upsilon(4S) resonance collected with the Belle II detector and corresponding to an integrated luminosity of 362 fb1{362~\text{fb}^{-1}}. The event yields are extracted from fits to the distributions of the difference between expected and observed BB meson energy to separate signal and background, and are efficiency-corrected as a function of the invariant mass of the KKS0K^-K_S^0 system. We find the branching fractions to be: B(BD0KKS0)=(1.89±0.16±0.10)×104, \text{B}(B^-\to D^0K^-K_S^0)=(1.89\pm 0.16\pm 0.10)\times 10^{-4}, B(B0D+KKS0)=(0.85±0.11±0.05)×104, \text{B}(\overline B{}^0\to D^+K^-K_S^0)=(0.85\pm 0.11\pm 0.05)\times 10^{-4}, B(BD0KKS0)=(1.57±0.27±0.12)×104, \text{B}(B^-\to D^{*0}K^-K_S^0)=(1.57\pm 0.27\pm 0.12)\times 10^{-4}, B(B0D+KKS0)=(0.96±0.18±0.06)×104, \text{B}(\overline B{}^0\to D^{*+}K^-K_S^0)=(0.96\pm 0.18\pm 0.06)\times 10^{-4}, where the first uncertainty is statistical and the second systematic. These results include the first observation of B0D+KKS0\overline B{}^0\to D^+K^-K_S^0, BD0KKS0B^-\to D^{*0}K^-K_S^0, and B0D+KKS0\overline B{}^0\to D^{*+}K^-K_S^0 decays and a significant improvement in the precision of B(BD0KKS0)\text{B}(B^-\to D^0K^-K_S^0) compared to previous measurements

    Measurements of the branching fractions for BKγB \to K^{*}\gamma decays at Belle II

    Get PDF
    This paper reports a study of BKγB \to K^{*}\gamma decays using 62.8±0.662.8\pm 0.6 fb1^{-1} of data collected during 2019--2020 by the Belle II experiment at the SuperKEKB e+ee^{+}e^{-} asymmetric-energy collider, corresponding to (68.2±0.8)×106(68.2 \pm 0.8) \times 10^6 BBB\overline{B} events. We find 454±28454 \pm 28, 50±1050 \pm 10, 169±18169 \pm 18, and 160±17160 \pm 17 signal events in the decay modes B0K0[K+π]γB^{0} \to K^{*0}[K^{+}\pi^{-}]\gamma, B0K0[KS0π0]γB^{0} \to K^{*0}[K^0_{\rm S}\pi^{0}]\gamma, B+K+[K+π0]γB^{+} \to K^{*+}[K^{+}\pi^{0}]\gamma, and B+K+[K+π0]γB^{+} \to K^{*+}[K^{+}\pi^{0}]\gamma, respectively. The uncertainties quoted for the signal yield are statistical only. We report the branching fractions of these decays: B[B0K0[K+π]γ]=(4.5±0.3±0.2)×105,\mathcal{B} [B^{0} \to K^{*0}[K^{+}\pi^{-}]\gamma] = (4.5 \pm 0.3 \pm 0.2) \times 10^{-5}, B[B0K0[KS0π0]γ]=(4.4±0.9±0.6)×105,\mathcal{B} [B^{0} \to K^{*0}[K^0_{\rm S}\pi^{0}]\gamma] = (4.4 \pm 0.9 \pm 0.6) \times 10^{-5}, B[B+K+[K+π0]γ]=(5.0±0.5±0.4)×105, and\mathcal{B} [B^{+} \to K^{*+}[K^{+}\pi^{0}]\gamma] = (5.0 \pm 0.5 \pm 0.4)\times 10^{-5},\text{ and} B[B+K+[KS0π+]γ]=(5.4±0.6±0.4)×105,\mathcal{B} [B^{+} \to K^{*+}[K^0_{\rm S}\pi^{+}]\gamma] = (5.4 \pm 0.6 \pm 0.4) \times 10^{-5}, where the first uncertainty is statistical, and the second is systematic. The results are consistent with world-average values
    corecore