430 research outputs found
Kovacs effects in an aging molecular liquid
We study by means of molecular dynamics simulations the aging behavior of a
molecular model of ortho-terphenyl. We find evidence of a a non-monotonic
evolution of the volume during an isothermal-isobaric equilibration process, a
phenomenon known in polymeric systems as Kovacs effect. We characterize this
phenomenology in terms of landscape properties, providing evidence that, far
from equilibrium, the system explores region of the potential energy landscape
distinct from the one explored in thermal equilibrium. We discuss the relevance
of our findings for the present understanding of the thermodynamics of the
glass state.Comment: RevTeX 4, 4 pages, 5 eps figure
Thermodynamics of black holes: an analogy with glasses
The present equilibrium formulation of thermodynamics for black holes has
several drawbacks, such as assuming the same temperature for black hole and
heat bath. Recently the author formulated non-equilibrium thermodynamics for
glassy systems. This approach is applied to black holes, with the cosmic
background temperature being the bath temperature, and the Hawking temperature
the internal temperature. Both Hawking evaporation and absorption of background
radiation are taken into account.
It is argued that black holes did not form in the very early universe.Comment: 4 pages revtex; submitted to Phys. Rev. Let
Thermodynamics of the glassy state: effective temperature as an additional system parameter
A system is glassy when the observation time is much smaller than the
equilibration time. A unifying thermodynamic picture of the glassy state is
presented. Slow configurational modes are in quasi-equilibrium at an effective
temperature. It enters thermodynamic relations with the configurational entropy
as conjugate variable. Slow fluctuations contribute to susceptibilities via
quasi-equilibrium relations, while there is also a configurational term.
Fluctuation-dissipation relations also involve the effective temperature.
Fluctuations in the energy are non-universal, however. The picture is supported
by analytically solving the dynamics of a toy model.Comment: 5 pages, REVTEX. Phys. Rev. Lett, to appea
Thermodynamic picture of the glassy state
A picture for thermodynamics of the glassy state is introduced. It assumes
that one extra parameter, the effective temperature, is needed to describe the
glassy state. This explains the classical paradoxes concerning the Ehrenfest
relations and the Prigogine-Defay ratio. As a second part, the approach
connects the response of macroscopic observables to a field change with their
temporal fluctuations, and with the fluctuation-dissipation relation, in a
generalized non-equilibrium way.Comment: Proceedings of the Conference "Unifying Concepts in Glass Physics",
ICTP, Trieste, 15 - 18 September 199
The Glass Transition Temperature of Water: A Simulation Study
We report a computer simulation study of the glass transition for water. To
mimic the difference between standard and hyperquenched glass, we generate
glassy configurations with different cooling rates and calculate the
dependence of the specific heat on heating. The absence of crystallization
phenomena allows us, for properly annealed samples, to detect in the specific
heat the simultaneous presence of a weak pre-peak (``shadow transition''), and
an intense glass transition peak at higher temperature.
We discuss the implications for the currently debated value of the glass
transition temperature of water. We also compare our simulation results with
the Tool-Narayanaswamy-Moynihan phenomenological model.Comment: submitted to Phys. Re
A test of non-equilibrium thermodynamics in glassy systems: the soft-sphere case
The scaling properties of the soft-sphere potential allow the derivation of
an exact expression for the pressure of a frozen liquid, i.e., the pressure
corresponding to configurations which are local minima in its multidimensional
potential energy landscape. The existence of such a relation offers the unique
possibility for testing the recently proposed extension of the liquid free
energy to glassy out-of-equilibrium conditions and the associated expression
for the temperature of the configurational degrees of freedom. We demonstrate
that the non-equilibrium free energy provides an exact description of the
soft-sphere pressure in glass states
Minimal model for beta relaxation in viscous liquids
Contrasts between beta relaxation in equilibrium viscous liquids and glasses
are rationalized in terms of a double-well potential model with
structure-dependent asymmetry, assuming structure is described by a single
order parameter. The model is tested for tripropylene glycol where it accounts
for the hysteresis of the dielectric beta loss peak frequency and magnitude
during cooling and reheating through the glass transition.Comment: Phys. Rev. Lett. (in press
Violation of the fluctuation-dissipation theorem in glassy systems: basic notions and the numerical evidence
This review reports on the research done during the past years on violations
of the fluctuation-dissipation theorem (FDT) in glassy systems. It is focused
on the existence of a quasi-fluctuation-dissipation theorem (QFDT) in glassy
systems and the currently supporting knowledge gained from numerical simulation
studies. It covers a broad range of non-stationary aging and stationary driven
systems such as structural-glasses, spin-glasses, coarsening systems,
ferromagnetic models at criticality, trap models, models with entropy barriers,
kinetically constrained models, sheared systems and granular media. The review
is divided into four main parts: 1) An introductory section explaining basic
notions related to the existence of the FDT in equilibrium and its possible
extension to the glassy regime (QFDT), 2) A description of the basic analytical
tools and results derived in the framework of some exactly solvable models, 3)
A detailed report of the current evidence in favour of the QFDT and 4) A brief
digression on the experimental evidence in its favour. This review is intended
for inexpert readers who want to learn about the basic notions and concepts
related to the existence of the QFDT as well as for the more expert readers who
may be interested in more specific results.Comment: 120 pages, 37 figures. Topical review paper . Several typos and
misprints corrected, new references included and others updated. to be
published in J. Phys. A (Math. Gen.
Individual Rights, Economic Transactions, and Recognition: A Legal Approach to Social Economics
Modernity brought the idea of individual property rights as a com- plex phenomenon. However, economics adopted a simplistic view of property as a fundamental institution, understating the complex interaction of different rights and obligations that frame the legal environment of economic processes with an insufficiently elaborated tool. Here, a more elaborate view of legal elements will be propose
Pecunia non olet but does rose money smell?: on rose oil prices and moral economy in Isparta, Turkey
- …
