Abstract

We report a computer simulation study of the glass transition for water. To mimic the difference between standard and hyperquenched glass, we generate glassy configurations with different cooling rates and calculate the TT dependence of the specific heat on heating. The absence of crystallization phenomena allows us, for properly annealed samples, to detect in the specific heat the simultaneous presence of a weak pre-peak (``shadow transition''), and an intense glass transition peak at higher temperature. We discuss the implications for the currently debated value of the glass transition temperature of water. We also compare our simulation results with the Tool-Narayanaswamy-Moynihan phenomenological model.Comment: submitted to Phys. Re

    Similar works

    Full text

    thumbnail-image