399 research outputs found

    Relativistic Dynamos in Magnetospheres of Rotating Compact Objects

    Get PDF
    The kinematic evolution of axisymmetric magnetic fields in rotating magnetospheres of relativistic compact objects is analytically studied, based on relativistic Ohm's law in stationary axisymmetric geometry. By neglecting the poloidal flows of plasma in simplified magnetospheric models, we discuss self-excited dynamos due to the frame-dragging effect (originally pointed out by Khanna & Camenzind), and we propose alternative processes to generate axisymmetric magnetic fields against ohmic dissipation. The first process (which may be called induced excitation) is caused by the help of a background uniform magnetic field in addition to the dragging of inertial frames. It is shown that excited multipolar components of poloidal and azimuthal fields are sustained as stationary modes, and outgoing Poynting flux converges toward the rotation axis. The second one is self-excited dynamo through azimuthal convection current, which is found to be effective if plasma rotation becomes highly relativistic with a sharp gradient in the angular velocity. In this case no frame-dragging effect is needed, and the coupling between charge separation and plasma rotation becomes important. We discuss briefly the results in relation to active phenomena in the relativistic magnetospheres.Comment: 16 pages, AASLaTeX macros v4.

    Asymptotic power-law tails of massive scalar fields in Reissner-Nordstr\"{o}m background

    Full text link
    We investigate dominant late-time tail behaviors of massive scalar fields in nearly extreme Reissner-Nordstr\"{o}m background. It is shown that the oscillatory tail of the scalar fields has the decay rate of t5/6t^{-5/6} at asymptotically late times. The physical mechanism by which the asymptotic t5/6t^{-5/6} tail yields and the relation between the field mass and the time scale when the tail begins to dominate, are discussed in terms of resonance backscattering due to spacetime curvature.Comment: 18 pages, 1 figure, accepted for publication in Physical Review

    Rate-determining process in MISIM photocells for optoelectronic conversion using photo-induced pure polarization current without carrier transfer across interfaces

    Get PDF
    Recently, we proposed a [metal|insulator|semiconductor|insulator|metal] (MISIM) photocell, as a novel architecture for high-speed organic photodetectors. The electric polarization in the S layer, induced by modulated light illumination, propagates into the outside circuit as a polarization current through the I layers, without any carrier transfer across the interfaces. In the present work, we examined the MISIM photocells consisting of zinc-phthalocyanine(ZnPc)-C60 bilayers for the S layer and Parylene C for the two I layers, to understand the fundamental aspects of the MISIM photocells, such as current polarity and modulation-frequency dependence. It was found that, in such devices, the current polarity was primarily determined by the polarization in the S layer, which was induced by the donor–acceptor charge-transfer upon illumination. Furthermore, the ON and OFF current, which appeared in the periods of illumination-on and -off, respectively, exhibited significantly different dependence on the modulation frequency. This was well-explained by an imbalance between a quick polarization in the S layer during illumination and its slow relaxation in the dark

    Instability of toroidal magnetic field in jets and plerions

    Get PDF
    Jets and pulsar-fed supernova remnants (plerions) tend to develop highly organized toroidal magnetic field. Such a field structure could explain the polarization properties of some jets, and contribute to their lateral confinement. A toroidal field geometry is also central to models for the Crab Nebula - the archetypal plerion - and leads to the deduction that the Crab pulsar's wind must have a weak magnetic field. Yet this `Z-pinch' field configuration is well known to be locally unstable, even when the magnetic field is weak and/or boundary conditions slow or suppress global modes. Thus, the magnetic field structures imputed to the interiors of jets and plerions are unlikely to persist. To demonstrate this, I present a local analysis of Z-pinch instabilities for relativistic fluids in the ideal MHD limit. Kink instabilities dominate, destroying the concentric field structure and probably driving the system toward a more chaotic state in which the mean field strength is independent of radius (and in which resistive dissipation of the field may be enhanced). I estimate the timescales over which the field structure is likely to be rearranged and relate these to distances along relativistic jets and radii from the central pulsar in a plerion. I conclude that a concentric toroidal field is unlikely to exist well outside the Crab pulsar's wind termination shock. There is thus no dynamical reason to conclude that the magnetic energy flux carried by the pulsar wind is much weaker than the kinetic energy flux. Abandoning this inference would resolve a long-standing puzzle in pulsar wind theory.Comment: 28 pages, plain TeX. Accepted for publication in Ap

    Asymptotic tails of massive scalar fields in Schwarzschild background

    Get PDF
    We investigate the asymptotic tail behavior of massive scalar fields in Schwarzschild background. It is shown that the oscillatory tail of the scalar field has the decay rate of t5/6t^{-5/6} at asymptotically late times, and the oscillation with the period 2π/m2\pi/m for the field mass mm is modulated by the long-term phase shift. These behaviors are qualitatively similar to those found in nearly extreme Reissner-Nordstr\"{o}m background, which are discussed in terms of a resonant backscattering due to the space-time curvature.Comment: 21 pages, 2 figures, accepted for publication in Phys.Rev.

    The most general axially symmetric electrovac spacetime adimitting separable equations of motion

    Full text link
    We obtain the most general solution of the Einstein electro - vacuum equation for the stationary axially symmetric spacetime in which the Hamilton-Jacobi and Klein - Gordon equations are separable. The most remarkable feature of the solution is its invariance under the duality transformation involving mass and NUT parameter, and the radial and angle coordinates. It is the general solution for a rotating (gravitational dyon) particle which is endowed with both gravoelectric and gravomagnetic charges, and there exists a duality transformation from one to the other. It also happens to be a transform of the Kerr - NUT solution. Like the Kerr family, it is also possible to make this solution radiating which asymptotically conforms to the Vaidya null radiation.Comment: 9 pages, RevTex, Accepted by Class. Quantum Grav. Title, Abstract and some expressions have been modified, typos corrected. The solution and main result remain unaltere

    Physical interpretation of NUT solution

    Full text link
    We show that the well-known NUT solution can be correctly interpreted as describing the exterior field of two counter-rotating semi-infinite sources possessing negative masses and infinite angular momenta which are attached to the poles of a static finite rod of positive mass.Comment: 7 pages, 1 figure, submitted to Classical and Quantum Gravit

    Vacuum polarization of scalar fields near Reissner-Nordstr\"{o}m black holes and the resonance behavior in field-mass dependence

    Get PDF
    We study vacuum polarization of quantized massive scalar fields ϕ\phi in equilibrium at black-hole temperature in Reissner-Nordstr\"{o}m background. By means of the Euclidean space Green's function we analytically derive the renormalized expression H_{H} at the event horizon with the area 4πr+24\pi r_{+}^{2}. It is confirmed that the polarization amplitude H_{H} is free from any divergence due to the infinite red-shift effect. Our main purpose is to clarify the dependence of H_{H} on field mass mm in relation to the excitation mechanism. It is shown for small-mass fields with mr+1mr_{+}\ll1 how the excitation of H_{H} caused by finite black-hole temperature is suppressed as mm increases, and it is verified for very massive fields with mr+1mr_{+}\gg1 that H_{H} decreases in proportion to m2m^{-2} with the amplitude equal to the DeWitt-Schwinger approximation. In particular, we find a resonance behavior with a peak amplitude at mr+0.38mr_{+}\simeq 0.38 in the field-mass dependence of vacuum polarization around nearly extreme (low-temperature) black holes. The difference between Scwarzschild and nearly extreme black holes is discussed in terms of the mass spectrum of quantum fields dominant near the event horizon.Comment: 24 pages, 1 figure Accepted in PR

    Time and "angular" dependent backgrounds from stationary axisymmetric solutions

    Full text link
    Backgrounds depending on time and on "angular" variable, namely polarized and unpolarized S1×S2S^1 \times S^2 Gowdy models, are generated as the sector inside the horizons of the manifold corresponding to axisymmetric solutions. As is known, an analytical continuation of ordinary DD-branes, iDiD-branes allows one to find SS-brane solutions. Simple models have been constructed by means of analytic continuation of the Schwarzchild and the Kerr metrics. The possibility of studying the ii-Gowdy models obtained here is outlined with an eye toward seeing if they could represent some kind of generalized SS-branes depending not only on time but also on an ``angular'' variable.Comment: 24 pages, 5 figures, corrected typos, references adde
    corecore