104 research outputs found

    Interplay between structure and magnetism in Mo12S9I9Mo_{12} S_9 I_9 nanowires

    Full text link
    We investigate the equilibrium geometry and electronic structure of Mo12_{12}S9_{9}I9_{9} nanowires using ab initio Density Functional calculations. The skeleton of these unusually stable nanowires consists of rigid, functionalized Mo octahedra, connected by flexible, bi-stable sulphur bridges. This structural flexibility translates into a capability to stretch up to approximate 20% at almost no energy cost. The nanowires change from conductors to narrow-gap magnetic semiconductors in one of their structural isomers.Comment: 4 pages with PRL standards and 3 figure

    Shot Noise and Full Counting Statistics from Non-equilibrium Plasmons in Luttinger-Liquid Junctions

    Full text link
    We consider a quantum wire double junction system with each wire segment described by a spinless Luttinger model, and study theoretically shot noise in this system in the sequential tunneling regime. We find that the non-equilibrium plasmonic excitations in the central wire segment give rise to qualitatively different behavior compared to the case with equilibrium plasmons. In particular, shot noise is greatly enhanced by them, and exceeds the Poisson limit. We show that the enhancement can be explained by the emergence of several current-carrying processes, and that the effect disappears if the channels effectively collapse to one due to, {\em e.g.}, fast plasmon relaxation processes.Comment: 9 pages; IOP Journal style; several changes in the tex

    Designing rigid carbon foams

    Full text link
    We use ab initio density functional calculations to study the stability, elastic properties and electronic structure of sp2 carbon minimal surfaces with negative Gaussian curvature, called schwarzites. We focus on two systems with cubic unit cells containing 152 and 200 carbon atoms, which are metallic and very rigid. The porous schwarzite structure allows for efficient and reversible doping by electron donors and acceptors, making it a promising candidate for the next generation of alkali ion batteries. We identify schwarzite structures that act as arrays of interconnected quantum spin dots or become magnetic when doped. We introduce two interpenetrating schwarzite structures that may find their use as the ultimate super-capacitor.Comment: 6 pages, 5 figure

    Orientational Melting in Carbon Nanotube Ropes

    Full text link
    Using Monte Carlo simulations, we investigate the possibility of an orientational melting transition within a "rope" of (10,10) carbon nanotubes. When twisting nanotubes bundle up during the synthesis, orientational dislocations or twistons arise from the competition between the anisotropic inter-tube interactions, which tend to align neighboring tubes, and the torsion rigidity that tends to keep individual tubes straight. We map the energetics of a rope containing twistons onto a lattice gas model and find that the onset of a free "diffusion" of twistons, corresponding to orientational melting, occurs at T_OM > 160 K.Comment: 4 page LaTeX file with 3 figures (10 PostScript files

    Molecular geometry optimization with a genetic algorithm

    Full text link
    We present a method for reliably determining the lowest energy structure of an atomic cluster in an arbitrary model potential. The method is based on a genetic algorithm, which operates on a population of candidate structures to produce new candidates with lower energies. Our method dramatically outperforms simulated annealing, which we demonstrate by applying the genetic algorithm to a tight-binding model potential for carbon. With this potential, the algorithm efficiently finds fullerene cluster structures up to C60{\rm C}_{60} starting from random atomic coordinates.Comment: 4 pages REVTeX 3.0 plus 3 postscript figures; to appear in Physical Review Letters. Additional information available under "genetic algorithms" at http://www.public.iastate.edu/~deaven

    Coherent Control of Photocurrents in Graphene and Carbon Nanotubes

    Full text link
    Coherent one photon (2ω2 \omega) and two photon (ω \omega) electronic excitations are studied for graphene sheets and for carbon nanotubes using a long wavelength theory for the low energy electronic states. For graphene sheets we find that coherent superposition of these excitations produces a polar asymmetry in the momentum space distribution of the excited carriers with an angular dependence which depends on the relative polarization and phases of the incident fields. For semiconducting nanotubes we find a similar effect which depends on the square of the semiconducting gap, and we calculate its frequency dependence. We find that the third order nonlinearity which controls the direction of the photocurrent is robust for semiconducting t ubes and vanishes in the continuum theory for conducting tubes. We calculate corrections to these results arising from higher order crystal field effects on the band structure and briefly discuss some applications of the theory.Comment: 12 pages in RevTex, 6 epsf figure

    Beans with bugs: Covert carnivory and infested seed selection by the red-nosed cuxiĂş monkey

    Get PDF
    Members of the Neotropical primate genus Chiropotes eat large volumes of immature seeds. However, such items are often low in available proteins, and digestion of seeds is further inhibited by tannins. This suggests that overall plant-derived protein intake is relatively low. We examined the presence of insect larvae in partially eaten fruits, compared with intact fruit on trees, and examined fecal pellets for the presence of larvae. We found that red-nosed cuxiĂş (Chiropotes albinasus) individuals may supplement their limited seed-derived protein intake by ingesting seed-inhabiting insects. Comparison of fruits partially eaten for their seeds with those sampled directly from trees showed that fruits with insect-containing seeds were positively selected in 20 of the 41 C. albinasus diet items tested, suggesting that fruits with infested seeds are actively selected by foraging animals. We found no differences in accessibility to seeds, that is, no differences in husk penetrability between fruits with infested and uninfested seeds excluding the likelihood that insect-infestation results in easier access to the seeds in such fruits. Additionally, none of the C. albinasus fecal samples showed any evidence of living pupae or larvae, indicating that infesting larvae are digested. Our findings raise the possibility that these seed-predating primates might provide net benefits to the plant species they feed on, since they feed from many species of plants and their actions may reduce the populations of seed-infesting insects
    • …
    corecore