4 research outputs found

    Avaliação de modelo de extração da água do solo por sistemas radiculares divididos entre camadas de solo com propriedades hidráulicas distintas Evaluation of a root-soil water extraction model by root systems divided over soil layers with distinct hydraulic properties

    Get PDF
    A avaliação da capacidade de raízes de plantas em extrair água do solo é de grande importância na modelagem da taxa de transpiração e, para entender o crescimento e rendimento vegetal e o balanço de água e de solutos no solo. Para testar um modelo de extração radicular macroscópico baseado no processo em escala microscópica, descreveram-se os resultados de um experimento com plantas cujo sistema radicular foi dividido entre camadas de solo com propriedades hidráulicas contrastantes. Um experimento de lisímetro dividido com plantas de sorgo foi realizado em Piracicaba-SP. Quatro lisímetros com dois compartimentos separados fisicamente (split-pot) foram construídos e preenchidos com material de dois tipos de solo de diferentes classes texturais (um solo de textura média - AR e outro de textura argilosa - AG). Durante um mês e meio foi imposto um regime hídrico, alternando a irrigação entre os compartimentos. O teor de água nos compartimentos dos lisímetros foi monitorado com TDR e tensiômetros. O material dos dois solos foi analisado conforme método-padrão quanto às suas propriedades de retenção e condução da água. A densidade radicular foi determinada por pesagem no fim do experimento, tendo ficado em torno de duas vezes maior no solo AR do que no AG. Observou-se que a extração de água ocorreu preferencialmente do compartimento do lisímetro com maior potencial de fluxo matricial. Em certas ocasiões houve transferência de água do lado de maior para o de menor potencial de fluxo matricial, com a liberação da água ao solo pelo sistema radicular (hydraulic lift). Para compensar o efeito da heterogeneidade da distribuição radicular e da atividade radicular, incluiu-se, no modelo, um fator empírico f de correção. O modelo testado descreveu bem 80 % das observações com a utilização de valores de f de 0,01506 e 0,003713, para os solos AR e AG, respectivamente. O modelo simulou a liberação de água ao solo mais frequentemente do que ela ocorreu no experimento. Esse fato pode indicar que a resistência interna do sistema radicular, não contabilizada pelo modelo, pode ter papel importante nas relações hídricas na rizosfera.<br>Evaluating plant root capacity in extrating water from the soil is important for transpiration modeling and to understand crop growth and yield and soil water and nutrient balance. Aiming to test a macroscopic root water extraction model based on the microscopic process description, an experiment was described in which the root system of plants penetrated different soil layers with contrasting hydraulic properties. Four lysimeters containing two physically divided compartments were built and filled with material of two soils with different texture (a medium textured soil - AR and a clayey soil - AG). During a month and a half a water regime was imposed alternating the irrigation among the compartments. The soil water content in the compartments was measured with TDR and tensiometers. Soil hydraulic properties - retention and conductivity - were analyzed by standard methods. Root density was determined by weighing at the end of the experiment, resulting in values twice as high in AR than in AG soil. It was observed that water extraction occurred preferentially from the lysimeter compartments with the highest matric flux potential. Occasionally, water transfer from the compartment with higher matric flux potential to the lower one was observed, releasing water from root to soil (hydraulic lift). To compensate for the effect of heterogeneity of root distribution and root activity and soil-root contact, an empirical factor f was added to the model. Its value was determined by a numerical fitting procedure aiming at the highest correlation between model and observation in the four lysimeters. The model described 80% of the observations satisfactorily by using these f values, which were 0.01506 and 0.003713, respectively, for AR and AG. Model predictions indicated a much more frequent water release from roots to soil than observed in the experiment. This may suggest internal root resistance, not considered by the model, may play an important role in root-water relations

    Facilitative root interactions in intercrops

    No full text
    Facilitation takes place when plants ameliorate the environment of their neighbours, and increase their growth and survival. Facilitation occurs in natural ecosystems as well as in agroecosystems. We discuss examples of facilitative root interactions in intercropped agroecosystems; including nitrogen transfer between legumes and non-leguminous plants, exploitation of the soil via mycorrhizal fungi and soil-plant processes which alter the mobilisation of plant growth resources such as through exudation of amino acids, extra-cellular enzymes, acidification, competition-induced modification of root architecture, exudation of growth stimulating substances, and biofumigation. Facilitative root interactions are most likely to be of importance in nutrient poor soils and in low-input agroecosystems due to critical interspecific competition for plant growth factors. However, studies from more intensified cropping systems using chemical and mechanical inputs also show that facilitative interactions definitely can be of significance. It is concluded that a better understanding of the mechanisms behind facilitative interactions may allow us to benefit more from these phenomena in agriculture and environmental management

    Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming

    No full text
    World population is projected to reach over nine billion by the year 2050, and ensuring food security while mitigating environmental impacts represents a major agricultural challenge. Thus, higher productivity must be reached through sustainable production by taking into account climate change, resources rarefaction like phosphorus and water, and losses of fertile lands. Enhancing crop diversity is increasingly recognized as a crucial lever for sustainable agro-ecological development. Growing legumes, a major biological nitrogen source, is also a powerful option to reduce synthetic nitrogen fertilizers use and associated fossil energy consumption. Organic farming, which does not allow the use of chemical, is also regarded as one prototype to enhance the sustainability of modern agriculture while decreasing environmental impacts. Here, we review the potential advantages of eco-functional intensification in organic farming by intercropping cereal and grain legume species sown and harvested together. Our review is based on a literature analysis reinforced with integration of an original dataset of 58 field experiments conducted since 2001 in contrasted pedo-climatic European conditions in order to generalize the findings and draw up common guidelines. The major points are that intercropping lead to: (i) higher and more stable grain yield than the mean sole crops (0.33 versus 0.27 kg m(-2)), (ii) higher cereal protein concentration than in sole crop (11.1 versus 9.8 %), (iii) higher and more stable gross margin than the mean sole crops (702 versus 577 a,not signaEuro parts per thousand ha(-1)) and (iv) improved use of abiotic resources according to species complementarities for light interception and use of both soil mineral nitrogen and atmospheric N-2. Intercropping is particularly suited for low-nitrogen availability systems but further mechanistic understanding is required to propose generic crop management procedures. Also, development of this practice must be achieved with the collaboration of value chain actors such as breeders to select cultivars suited to intercropping
    corecore