1,243 research outputs found

    Resource-Poor Farmers' Constraints regarding Integrated Soil Fertility and Nutrient Management for Sustainable Crop Production: A farm level study in Bangladesh

    Get PDF
    Sustainable crop production requires a judicious management of soil resources and of all plant nutrient sources available in a farm or a village. The main focus of the study was to determine the constraints faced by the resource-poor farmers regarding integrated soil fertility and nutrient management for sustainable crop production. Field work was conducted in eight villages of four districts in Bangladesh and data were collected from 92 resource-poor farmers through personal interviews. Four point-summated rating scales were used to determine farmers' constraints while five point Likert-type response scales were used to measure the suggestions provided by them to improve the situations. Findings indicated that most of the farmers confronted high problems regarding soil fertility and nutrient management aspects. The issues mostly confronted were the lack of organizing demonstration plots, inadequate training facilities, lack of availability information sources, financial problems, unavailability and unstable price of chemical fertilizers and shortage of knowledge about the beneficial aspect of using organic manure along with chemical fertilizers for crop production. Develop facilities for easy way of getting agricultural loan prior to crop seasons, strengthen extension activities especially for resource-poor farmers, and ensure the availability of chemical fertilizers during cropping seasons with stable price were the matters mostly suggested by farmers to improve the situations.Crop Production/Industries,

    Effect of Pt doping on the critical temperature and upper critical field in YNi2-xPtxB2C (x=0-0.2)

    Full text link
    We investigate the evolution of superconducting properties by doping non-magnetic impurity in single crystals of YNi2-xPtxB2C (x=0-0.2). With increasing Pt doping the critical temperature (Tc) monotonically decreases from 15.85K and saturates to a value ~13K for x>0.14. However, unlike conventional s-wave superconductors, the upper critical field (HC2) along both crystallographic directions a and c decreases with increasing Pt doping. Specific heat measurements show that the density of states (N(EF)) at the Fermi level (EF) and the Debye temperatures (Theta_D) in this series remains constant within the error bars of our measurement. We explain our results based on the increase in intraband scattering in the multiband superconductor YNi2B2C.Comment: ps file with figure

    Temperature dependence of iron local magnetic moment in phase-separated superconducting chalcogenide

    Get PDF
    We have studied local magnetic moment and electronic phase separation in superconducting Kx_{x}Fe2y_{2-y}Se2_2 by x-ray emission and absorption spectroscopy. Detailed temperature dependent measurements at the Fe K-edge have revealed coexisting electronic phases and their correlation with the transport properties. By cooling down, the local magnetic moment of Fe shows a sharp drop across the superconducting transition temperature (Tc_c) and the coexisting phases exchange spectral weights with the low spin state gaining intensity at the expense of the higher spin state. After annealing the sample across the iron-vacancy order temperature, the system does not recover the initial state and the spectral weight anomaly at Tc_c as well as superconductivity disappear. The results clearly underline that the coexistence of the low spin and high spin phases and the transitions between them provide unusual magnetic fluctuations and have a fundamental role in the superconducting mechanism of electronically inhomogeneous Kx_{x}Fe2y_{2-y}Se2_2 system.Comment: 6 pages, 5 figure

    Renormalization of thermal conductivity of disordered d-wave superconductors by impurity-induced local moments

    Full text link
    The low-temperature thermal conductivity \kappa_0/T of d-wave superconductors is generally thought to attain a "universal" value independent of disorder at sufficiently low temperatures, providing an important measure of the magnitude of the gap slope near its nodes. We discuss situations in which this inference can break down because of competing order, and quasiparticle localization. Specifically, we study an inhomogeneous BCS mean field model with electronic correlations included via a Hartree approximation for the Hubbard interaction, and show that the suppression of \kappa_0/T by localization effects can be strongly enhanced by magnetic moment formation around potential scatterers.Comment: 2 pages, 1 figure, submitted to M2S-HTSC VIII, Dresden 200

    Observation of the spontaneous vortex phase in the weakly ferromagnetic superconductor ErNi2_{2}B2_{2}C: A penetration depth study

    Full text link
    The coexistence of weak ferromagnetism and superconductivity in ErNi2_{2}B2% _{2}C suggests the possibility of a spontaneous vortex phase (SVP) in which vortices appear in the absence of an external field. We report evidence for the long-sought SVP from the in-plane magnetic penetration depth Δλ(T)\Delta \lambda (T) of high-quality single crystals of ErNi2_{2}B2_{2}C. In addition to expected features at the N\'{e}el temperature TNT_{N} = 6.0 K and weak ferromagnetic onset at TWFM=2.3T_{WFM}=2.3 K, Δλ(T)\Delta \lambda (T) rises to a maximum at Tm=0.45T_{m}=0.45 K before dropping sharply down to \sim 0.1 K. We assign the 0.45 K-maximum to the proliferation and freezing of spontaneous vortices. A model proposed by Koshelev and Vinokur explains the increasing Δλ(T)\Delta \lambda (T) as a consequence of increasing vortex density, and its subsequent decrease below TmT_{m} as defect pinning suppresses vortex hopping.Comment: 5 pages including figures; added inset to Figure 2; significant revisions to tex
    corecore