41 research outputs found

    Peripheral Nerve Injury Is Associated with Chronic, Reversible Changes in Global DNA Methylation in the Mouse Prefrontal Cortex

    Get PDF
    Changes in brain structure and cortical function are associated with many chronic pain conditions including low back pain and fibromyalgia. The magnitude of these changes correlates with the duration and/or the intensity of chronic pain. Most studies report changes in common areas involved in pain modulation, including the prefrontal cortex (PFC), and pain-related pathological changes in the PFC can be reversed with effective treatment. While the mechanisms underlying these changes are unknown, they must be dynamically regulated. Epigenetic modulation of gene expression in response to experience and environment is reversible and dynamic. Epigenetic modulation by DNA methylation is associated with abnormal behavior and pathological gene expression in the central nervous system. DNA methylation might also be involved in mediating the pathologies associated with chronic pain in the brain. We therefore tested a) whether alterations in DNA methylation are found in the brain long after chronic neuropathic pain is induced in the periphery using the spared nerve injury modal and b) whether these injury-associated changes are reversible by interventions that reverse the pathologies associated with chronic pain. Six months following peripheral nerve injury, abnormal sensory thresholds and increased anxiety were accompanied by decreased global methylation in the PFC and the amygdala but not in the visual cortex or the thalamus. Environmental enrichment attenuated nerve injury-induced hypersensitivity and reversed the changes in global PFC methylation. Furthermore, global PFC methylation correlated with mechanical and thermal sensitivityin neuropathic mice. In summary, induction of chronic pain by peripheral nerve injury is associated with epigenetic changes in the brain. These changes are detected long after the original injury, at a long distance from the site of injury and are reversible with environmental manipulation. Changes in brain structure and cortical function that are associated with chronic pain conditions may therefore be mediated by epigenetic mechanisms

    Effect of voluntary running activity on mRNA

    No full text

    Spinal matrix metalloproteinase 8 regulates pain after peripheral trauma

    No full text
    Maral Tajerian,1 J David Clark2–41Department of Biology, Queens College, City University of New York, Queens, NY 11367, USA; 2Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; 3Department of Anesthesiology, Stanford University School of Medicine, Stanford, CA 94305, USA; 4Palo Alto Veterans Institute for Research, Palo Alto, CA 94304, USAAbstract: It is well documented that pain chronification requires a host of plastic mechanisms at the spinal cord (SC) level, including alterations in neuronal and glial structure and function. Such cellular plasticity necessitates the existence of a plastic extracellular matrix (ECM). Here, we describe a key role for ECM remodeling in the regulation of chronic pain following peripheral injury. Three weeks following tibia fracture in mice, we show increased levels of MMP8 in the SC. Furthermore, we show that the pharmacological or genetic downregulation of MMP8 ameliorates the pain phenotype observed after injury. These results delineate an extracellular mechanism for pain chronification, thereby improving our mechanistic understanding of pain and providing novel therapeutic venues that go beyond targeting individual cell types.Keywords: spinal cord, chronic pain, matrix metalloproteinase 8, mouse model, mechanical allodynia, shRN

    Peripheral nerve injury is associated with chronic, reversible changes in global DNA methylation in the mouse prefrontal cortex.

    Get PDF
    Changes in brain structure and cortical function are associated with many chronic pain conditions including low back pain and fibromyalgia. The magnitude of these changes correlates with the duration and/or the intensity of chronic pain. Most studies report changes in common areas involved in pain modulation, including the prefrontal cortex (PFC), and pain-related pathological changes in the PFC can be reversed with effective treatment. While the mechanisms underlying these changes are unknown, they must be dynamically regulated. Epigenetic modulation of gene expression in response to experience and environment is reversible and dynamic. Epigenetic modulation by DNA methylation is associated with abnormal behavior and pathological gene expression in the central nervous system. DNA methylation might also be involved in mediating the pathologies associated with chronic pain in the brain. We therefore tested a) whether alterations in DNA methylation are found in the brain long after chronic neuropathic pain is induced in the periphery using the spared nerve injury modal and b) whether these injury-associated changes are reversible by interventions that reverse the pathologies associated with chronic pain. Six months following peripheral nerve injury, abnormal sensory thresholds and increased anxiety were accompanied by decreased global methylation in the PFC and the amygdala but not in the visual cortex or the thalamus. Environmental enrichment attenuated nerve injury-induced hypersensitivity and reversed the changes in global PFC methylation. Furthermore, global PFC methylation correlated with mechanical and thermal sensitivity in neuropathic mice. In summary, induction of chronic pain by peripheral nerve injury is associated with epigenetic changes in the brain. These changes are detected long after the original injury, at a long distance from the site of injury and are reversible with environmental manipulation. Changes in brain structure and cortical function that are associated with chronic pain conditions may therefore be mediated by epigenetic mechanisms

    A systematic study on the use of ultrasound energy for the synthesis of nickel-metal organic framework compounds

    No full text
    A nickel metal-organic framework (Ni-MOF) was successfully synthesized using ultrasound irradiation. Further to this, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and nitrogen adsorption [i.e. Brunauer-Emmett-Teller (BET) Surface Area Analysis] techniques were used to characterize the synthesized Ni-MOF. In addition, the effect of sonication on the surface area, pore diameter and pore volume of the final product was systematically studied using Taguchi technique. The experiments ascertained that manufacturing of the Ni-MOF by means of the ultrasonic-assisted technique is feasible at a relatively shorter time compare to the conventional methods. The final product showed more uniform shape distribution and improved BET properties. The obtained results offered that the synthesized Ni-MOF samples could be used in several applications

    A systematic study on the use of ultrasound energy for the synthesis of nickel-metal organic framework compounds

    No full text
    \u3cp\u3eA nickel metal-organic framework (Ni-MOF) was successfully synthesized using ultrasound irradiation. Further to this, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and nitrogen adsorption [i.e. Brunauer-Emmett-Teller (BET) Surface Area Analysis] techniques were used to characterize the synthesized Ni-MOF. In addition, the effect of sonication on the surface area, pore diameter and pore volume of the final product was systematically studied using Taguchi technique. The experiments ascertained that manufacturing of the Ni-MOF by means of the ultrasonic-assisted technique is feasible at a relatively shorter time compare to the conventional methods. The final product showed more uniform shape distribution and improved BET properties. The obtained results offered that the synthesized Ni-MOF samples could be used in several applications.\u3c/p\u3
    corecore