526 research outputs found

    A Preliminary Analysis for Understanding Variations in Mountain Springs’ Water Availability under Climate Change in Aosta Valley

    Get PDF
    The availability of freshwater resources in alpine mountain areas has been affected by the impacts of climate change on groundwater storage mechanisms. A web of complex interactions characterizes climate systems, and several potential effects of climate change in such areas remain largely unknown. Therefore, examining how groundwater storage mechanisms are changing in response to climate-driven agents is becoming increasingly crucial. To comprehend the existing relationship between changes in weather conditions and water availability in the Aosta Valley region (Northwestern Italy) and how their trends have changed over the last decade, a 7-year discharge series of different Aosta Valley springs (Promise, Alpe Perrot, Promiod, Cheserod) and precipitation data of the related meteorological stations (Aymaville-Viayes, La Thuile-Villaret, Champdepraz, Sant Vincent) were analyzed. The extent of the correlations between springs discharge measurements and hydrometeorological data was investigated. Besides, precipitation and flow rate trend analyses using the Mann–Kendall and Sen’s slope trend detection tests were performed. The Aymaville-Viayes, La Thuile-Villaret, Champdepraz, and Sant Vincent meteorological stations revealed an overall decreasing trend in annual rainfall (mm), with a slight increase in intensity (mm/day) as a result of the reduction in rainfall events (number of rainy days). Nonetheless, based on the analysis of flow rate data relating to the associated springs, Alpe Perrot, Cheserod, and Promise show an overall increasing trend of discharge over time. Although the Cheserod and Promise springs were not found to be highly correlated with rainfall, their aquifers appear to positively respond to the modified climate conditions, increasing the amount of groundwater stored. The moderate correlation values of these two springs can be a consequence of several factors such as aquifer features, distance from the weather station, and solid precipitation amounts that supply water in the following hydrogeological year. Being able to continuously monitor the effects induced by changed climatic conditions on water reserves through simplified analysis approaches such as those presented in this paper is increasingly necessary. Moreover, implementing future studies through in-depth analyses of soil infiltration, groundwater recharge and storage mechanisms are required to predict the mountain aquifers’ behavior in changing climatic conditions

    The nebular spectra of SN 2012aw and constraints on stellar nucleosynthesis from oxygen emission lines

    Get PDF
    We present nebular phase optical and near-infrared spectroscopy of the Type IIP supernova SN 2012aw combined with NLTE radiative transfer calculations applied to ejecta from stellar evolution/explosion models. Our spectral synthesis models generally show good agreement with the ejecta from a MZAMS = 15 Msun progenitor star. The emission lines of oxygen, sodium, and magnesium are all consistent with the nucleosynthesis in a progenitor in the 14 - 18 Msun range. We also demonstrate how the evolution of the oxygen cooling lines of [O I] 5577 A, [O I] 6300 A, and [O I] 6364 A can be used to constrain the mass of oxygen in the non-molecularly cooled ashes to < 1 Msun, independent of the mixing in the ejecta. This constraint implies that any progenitor model of initial mass greater than 20 Msun would be difficult to reconcile with the observed line strengths. A stellar progenitor of around MZAMS = 15 Msun can consistently explain the directly measured luminosity of the progenitor star, the observed nebular spectra, and the inferred pre-supernova mass-loss rate. We conclude that there is still no convincing example of a Type IIP explosion showing the nucleosynthesis expected from a MZAMS > 20 Msun progenitor.Comment: Accepted for publication in MNRA

    Estimating Quasi-long-range Order via Renyi Entropies

    Full text link
    We show how entanglement entropies allow for the estimation of quasi-long-range order in one dimensional systems whose low-energy physics is well captured by the Tomonaga-Luttinger liquid universality class. First, we check our procedure in the exactly solvable XXZ spin-1/2 chain in its entire critical region, finding very good agreement with Bethe ansatz results. Then, we show how phase transitions between different dominant orders may be efficiently estimated by considering the superfluid-charge density wave transition in a system of dipolar bosons. Finally, we discuss the application of this method to multispecies systems such as the one dimensional Hubbard model. Our work represent the first proof of a direct relationship between the Luttinger parameter and R\'enyi entropies in both bosonics and fermionic lattice models.Comment: v2: minimal changes, 6 pages, 7 figures, accepted for publication in Phys. Rev.

    A metallicity study of 1987A-like supernova host galaxies

    Full text link
    The origin of the blue supergiant (BSG) progenitor of Supernova (SN) 1987A has long been debated, along with the role that its sub-solar metallicity played. We now have a sample of 1987A-like SNe that arise from the core collapse (CC) of BSGs. The metallicity of the explosion sites of the known BSG SNe is investigated, as well as their association to star-forming regions. Both indirect and direct metallicity measurements of 13 BSG SN host galaxies are presented, and compared to those of other CC SN types. Indirect measurements are based on the known luminosity-metallicity relation and on published metallicity gradients of spiral galaxies. To provide direct estimates based on strong line diagnostics, we obtained spectra of each BSG SN host both at the SN explosion site and at the positions of other HII regions. Continuum-subtracted Ha images allowed us to quantify the association between BSG SNe and star-forming regions. BSG SNe explode either in low-luminosity galaxies or at large distances from the nuclei of luminous hosts. Therefore, their indirectly measured metallicities are typically lower than those of SNe IIP and Ibc. This is confirmed by the direct estimates, which show slightly sub-solar values (12+log(O/H)=8.3-8.4 dex), similar to that of the Large Magellanic Cloud (LMC), where SN 1987A exploded. However, two SNe (1998A and 2004em) were found at near solar metallicity. SNe IIb have a metallicity distribution similar to that of BSG SNe. Finally, the association to star-forming regions is similar among BSG SNe, SNe IIP and IIn. Our results suggest that LMC metal abundances play a role in the formation of some 1987A-like SNe. This would naturally fit in a single star scenario for the progenitors. However, the existence of two events at nearly solar metallicity suggests that also other channels, e.g. binarity, contribute to produce BSG SNe.Comment: 28 pages, 17 figures; accepted for publication (Astronomy and Astrophysics); abstract abridged for arXiv submissio

    Constraints on the origin of the first light from SN2014J

    Get PDF
    We study the very early lightcurve of supernova 2014J (SN 2014J) using the high-cadence broad-band imaging data obtained by the Kilodegree Extremely Little Telescope (KELT), which fortuitously observed M 82 around the time of the explosion, starting more than two months prior to detection, with up to 20 observations per night. These observations are complemented by observations in two narrow-band filters used in an Hα\alpha survey of nearby galaxies by the intermediate Palomar Transient Factory (iPTF) that also captured the first days of the brightening of the \sn. The evolution of the lightcurves is consistent with the expected signal from the cooling of shock heated material of large scale dimensions, \gsim 1 R_{\odot}. This could be due to heated material of the progenitor, a companion star or pre-existing circumstellar environment, e.g., in the form of an accretion disk. Structure seen in the lightcurves during the first days after explosion could also originate from radioactive material in the outer parts of an exploding white dwarf, as suggested from the early detection of gamma-rays. The model degeneracy translates into a systematic uncertainty of ±0.3\pm 0.3 days on the estimate of the first light from SN 2014J.Comment: Accepted by ApJ. Companion paper by Siverd et al, arXiv:1411.415

    Critical properties and R\'enyi entropies of the spin-3/2 XXZ chain

    Full text link
    We discuss entanglement and critical properties of the spin-3/2 XXZ chain in its entire gapless region. Employing density-matrix renormalization group calculations combined with different methods based on level spectroscopy, correlation functions and entanglement entropies, we determine the sound velocity and the Luttinger parameter of the model as a function of the anisotropy parameter. Then, we focus on entanglement properties by systematically studying the behavior of R\'enyi entropies under both open and periodic boundary conditions, providing further evidence of recent findings about entanglement entropies of excited states in conformal field theory.Comment: 8 pages, 10 figures; small text revisions and a new figure. Accepted for publication in Phys. Rev.

    Gap scaling at Berezinskii-Kosterlitz-Thouless quantum critical points in one-dimensional Hubbard and Heisenberg models

    Full text link
    We discuss how to locate critical points in the Berezinskii-Kosterlitz-Thouless (BKT) universality class by means of gap-scaling analyses. While accurately determining such points using gap extrapolation procedures is usually challenging and inaccurate due to the exponentially small value of the gap in the vicinity of the critical point, we show that a generic gap-scaling analysis, including the effects of logarithmic corrections, provides very accurate estimates of BKT transition points in a variety of spin and fermionic models. As a first example, we show how the scaling procedure, combined with density-matrix-renormalization-group simulations, performs extremely well in a non-integrable spin-3/23/2 XXZ model, which is known to exhibit strong finite-size effects. We then analyze the extended Hubbard model, whose BKT transition has been debated, finding results that are consistent with previous studies based on the scaling of the Luttinger-liquid parameter. Finally, we investigate an anisotropic extended Hubbard model, for which we present the first estimates of the BKT transition line based on large-scale density-matrix-renormalization-group simulations. Our work demonstrates how gap-scaling analyses can help to locate accurately and efficiently BKT critical points, without relying on model-dependent scaling assumptions.Comment: 8 pages, 7 figure

    Metallicity at the explosion sites of interacting transients

    Get PDF
    Context. Some circumstellar-interacting (CSI) supernovae (SNe) are produced by the explosions of massive stars that have lost mass shortly before the SN explosion. There is evidence that the precursors of some SNe IIn were luminous blue variable (LBV) stars. For a small number of CSI SNe, outbursts have been observed before the SN explosion. Eruptive events of massive stars are named as SN impostors (SN IMs) and whether they herald a forthcoming SN or not is still unclear. The large variety of observational properties of CSI SNe suggests the existence of other progenitors, such as red supergiant (RSG) stars with superwinds. Furthermore, the role of metallicity in the mass loss of CSI SN progenitors is still largely unexplored. Aims. Our goal is to gain insight on the nature of the progenitor stars of CSI SNe by studying their environments, in particular the metallicity at their locations. Methods. We obtain metallicity measurements at the location of 60 transients (including SNe IIn, SNe Ibn, and SN IMs), via emission-line diagnostic on optical spectra obtained at the Nordic Optical Telescope and through public archives. Metallicity values from the literature complement our sample. We compare the metallicity distributions among the different CSI SN subtypes and to those of other core-collapse SN types. We also search for possible correlations between metallicity and CSI SN observational properties. Results. We find that SN IMs tend to occur in environments with lower metallicity than those of SNe IIn. Among SNe IIn, SN IIn-L(1998S-like) SNe show higher metallicities, similar to those of SNe IIL/P, whereas long-lasting SNe IIn (1988Z-like) show lower metallicities, similar to those of SN IMs. The metallicity distribution of SNe IIn can be reproduced by combining the metallicity distributions of SN IMs (that may be produced by major outbursts of massive stars like LBVs) and SNe IIP (produced by RSGs). The same applies to the distributions of the Normalized Cumulative Rank (NCR) values, which quantifies the SN association to H II regions. For SNe IIn, we find larger mass-loss rates and higher CSM velocities at higher metallicities. The luminosity increment in the optical bands during SN IM outbursts tend to be larger at higher metallicity, whereas the SN IM quiescent optical luminosities tend to be lower. Conclusions. The difference in metallicity between SNe IIn and SN IMs suggests that LBVs are only one of the progenitor channels for SNe IIn, with 1988Z-like and 1998S-like SNe possibly arising from LBVs and RSGs, respectively. Finally, even though linedriven winds likely do not primarily drive the late mass-loss of CSI SN progenitors, metallicity has some impact on the observational properties of these transients. Key words. supernovae: general - stars: evolution - galaxies: abundancesComment: Submitted to Astronomy and Astrophysics on 28/02/2015; submitted to arXiv after the 1st referee repor

    Synthetic gauge fields in synthetic dimensions: interactions and chiral edge modes

    Get PDF
    Synthetic ladders realized with one-dimensional alkaline-earth(-like) fermionic gases and subject to a gauge field represent a promising environment for the investigation of quantum Hall physics with ultracold atoms. Using density-matrix renormalization group calculations, we study how the quantum Hall-like chiral edge currents are affected by repulsive atom-atom interactions. We relate the properties of such currents to the asymmetry of the spin resolved momentum distribution function, a quantity which is easily addressable in state-of-art experiments. We show that repulsive interactions significantly enhance the chiral currents. Our numerical simulations are performed for atoms with two and three internal spin states

    Reliability of spring recession curve analysis as a function of the temporal resolution of the monitoring dataset

    Get PDF
    Mountain springs represent one of the largest and most precious sources of potable water in Italy, necessary to meet the water needs of the population. Optimizing the present and future management strategies of mountain groundwater resources has become increasingly necessary. The accuracy and frequency of the flow rate (Q) measurements determine and restrict the processes that can be studied using spring hydrograph and recession curve analysis. Therefore, to properly define mountain aquifers’ hydrogeological properties, it turns out important to highlight the variation of the error in the estimation of the hydrogeological parameters as the time interval of sampling varies. In this paper, recession curve analysis was performed on two different mountain springs (Spring 1 and Spring 2) of north-western Italy, firstly considering available 4-h resolution measuring data and subsequently by resampling data to simulate longer sampling intervals of 1, 3, 7, 15, and 30 days. The resulting distribution of errors introduced by longer acquisition intervals underlined how the percentage error increases with increasing acquisition interval. For obtaining an adequate estimation of mountain aquifer hydrodynamic parameters, in place of continuous hourly data, 1-day and 3-day sampling intervals with associated errors respectively lower than 5% and 10% were found to be valid
    • …
    corecore