8 research outputs found

    Stakeholder-driven transformative adaptation is needed for climate-smart nutrition security in sub-Saharan Africa - author correction

    Get PDF
    oai:repository.rothamsted.ac.uk:99048Improving nutrition security in sub-Saharan Africa under increasing climate risks and population growth requires a strong and contextualized evidence base. Yet, to date, few studies have assessed climate-smart agriculture and nutrition security simultaneously. Here we use an integrated assessment framework (iFEED) to explore stakeholder-driven scenarios of food system transformation towards climate-smart nutrition security in Malawi, South Africa, Tanzania and Zambia. iFEED translates climate–food–emissions modelling into policy-relevant information using model output implication statements. Results show that diversifying agricultural production towards more micronutrient-rich foods is necessary to achieve an adequate population-level nutrient supply by mid-century. Agricultural areas must expand unless unprecedented rapid yield improvements are achieved. While these transformations are challenging to accomplish and often associated with increased greenhouse gas emissions, the alternative for a nutrition-secure future is to rely increasingly on imports, which would outsource emissions and be economically and politically challenging given the large import increases required

    Stakeholder-driven transformative adaptation is needed for climate-smart nutrition security in sub-Saharan Africa

    Get PDF
    Improving nutrition security in sub-Saharan Africa under increasing climate risks and population growth requires a strong and contextualised evidence base. Yet, to date, few studies have assessed climate-smart agriculture and nutrition security simultaneously. Here we use an integrated assessment framework (iFEED) to explore stakeholder-driven scenarios of food system transformation towards climate-smart nutrition security in Malawi, South Africa, Tanzania and Zambia. iFEED translates climate-food-emissions modelling into policy-relevant information using model output implication statements. Results show that diversifying agricultural production towards more micronutrient-rich foods is necessary to achieve an adequate population-level nutrient supply by mid-century. Agricultural areas must expand unless unprecedented rapid yield improvements are achieved. Whilst these transformations are challenging to accomplish and often associated with increased greenhouse gas emissions, the alternative for a nutrition-secure future is to rely increasingly on imports, which would outsource emissions and be economically and politically challenging given the large import increases required

    Author Correction: Stakeholder-driven transformative adaptation is needed for climate-smart nutrition security in sub-Saharan Africa

    No full text
    Correction to: Nature Food https://doi.org/10.1038/s43016-023-00901-y, published online 2 January 2024. In the version of the article initially published, the XDER threshold for dietary energy in Figs. 3 and 4 and Supplementary Figs. 6–11 was incorrectly set at approximately 230%. This is now corrected to be at approximately 130%. Figs. 3 and 4 have been corrected in the HTML and PDF versions of the article, and amended Supplementary Information is available online
    corecore