2,597 research outputs found

    Theory of edge-state optical absorption in two-dimensional transition metal dichalcogenide flakes

    Get PDF
    We develop an analytical model to describe sub-band-gap optical absorption in two-dimensional semiconducting transition metal dichalcogenide (s-TMD) nanoflakes. The material system represents an array of few-layer molybdenum disulfide crystals, randomly orientated in a polymer matrix. We propose that optical absorption involves direct transitions between electronic edge states and bulk bands, depends strongly on the carrier population, and is saturable with sufficient fluence. For excitation energies above half the band gap, the excess energy is absorbed by the edge-state electrons, elevating their effective temperature. Our analytical expressions for the linear and nonlinear absorption could prove useful tools in the design of practical photonic devices based on s-TMDs.Royal Academy of Engineering, Collaborative Research Center 76

    E00-110 experiment at Jefferson Lab Hall A: Deeply virtual Compton scattering off the proton at 6 GeV

    Get PDF
    We present final results on the photon electroproduction ((e) over right arrowp - \u3e ep gamma) cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region from Jefferson Lab experiment E00-110. Results from an analysis of a subset of these data were published before, but the analysis has been improved, which is described here at length, together with details on the experimental setup. Furthermore, additional data have been analyzed, resulting in photon electroproduction cross sections at new kinematic settings for a total of 588 experimental bins. Results of the Q(2) and x(B) dependencies of both the helicity-dependent and the helicity-independent cross sections are discussed. The Q(2) dependence illustrates the dominance of the twist-2 handbag amplitude in the kinematics of the experiment, as previously noted. Thanks to the excellent accuracy of this high-luminosity experiment, it becomes clear that the unpolarized cross section shows a significant deviation from the Bethe-Heitler process in our kinematics, compatible with a large contribution from the leading twist-

    Development of high-performance alkali-hybrid polarized He-3 targets for electron scattering

    Get PDF
    Background: Polarized He-3 targets have been used as effective polarized neutron targets for electron scattering experiments for over twenty years. Over the last ten years, the effective luminosity of polarized He-3 targets based on spin-exchange optical pumping has increased by over an order of magnitude. This has come about because of improvements in commercially-available lasers and an improved understanding of the physics behind the polarization process. Purpose: We present the development of high-performance polarized He-3 targets for use in electron scattering experiments. Improvements in the performance of polarized He-3 targets, target properties, and operating parameters are documented. Methods: We utilize the technique of alkali-hybrid spin-exchange optical pumping to polarize the He-3 targets. Spectrally narrowed diode lasers used for the optical pumping greatly improved the performance. A simulation of the alkali-hybrid spin-exchange optical pumping process was developed to provide guidance in the design of the targets. Data was collected during the characterization of 24 separate glass target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. Results: From the data obtained we made determinations of the so-called X-factors that quantify a temperaturedependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable He-3 polarization to well under 100%. The presence of the X-factor spin-relaxation mechanism was clearly evident in our data. Good agreement between the simulation and the actual target performance was obtained by including details such as off-resonant optical pumping. Included in our results is ameasurement of the K-He-3 spin-exchange rate coefficient k(se)(K) = (7.46 +/- 0.62) x 10(-20) cm(3)/s over the temperature range 503 K to 563 K. Conclusions: In order to achieve high performance under the operating conditions described in this paper, the K to Rb alkali vapor density ratio should be about 5 +/- 2 and the line width of the optical pumping lasers should be no more than 0.3 nm. Our measurements of the X-factors under these conditions seem to indicate the He-3 polarization is limited to approximate to 90%. The simulation results, now benchmarked against experimental data, are useful for the design of future targets. Further work is required to better understand the temperature dependence of the X-factor spin-relaxation mechanism and the limitations of our optical pumping simulation

    Few-layer MoS<inf>2</inf> saturable absorbers for short-pulse laser technology: Current status and future perspectives [Invited]

    Get PDF
    Few-layer molybdenum disul de (MoS2) is emerging as a promising quasi-two-dimensional material, further extending the library of suitable layered nanomaterials with exceptional optical properties for use in saturable absorber devices that enable short-pulse generation in laser systems. In this article, we catalog and review the nonlinear optical properties of few-layer MoS2, summarize recent progress in processing and integration into saturable absorber devices and comment on the current status and future perspectives of MoS2-based pulsed lasers.The authors would like to thank J. R. Taylor for fruitful discussions. EJRK and TH acknowledge support from the Royal Academy of Engineering (RAEng).This is the author accepted manuscript. The final version is available from OSA via https://www.osapublishing.org/prj/abstract.cfm?URI=prj-3-2-A30

    Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS2_2 using multiphoton microscopy

    Full text link
    We report second- and third-harmonic generation in monolayer MoS2_\mathrm{2} as a tool for imaging and accurately characterizing the material's nonlinear optical properties under 1560 nm excitation. Using a surface nonlinear optics treatment, we derive expressions relating experimental measurements to second- and third-order nonlinear sheet susceptibility magnitudes, obtaining values of χs(2)=2.0×1020|\chi_s^{(2)}|=2.0\times10^{-20} m2^2 V1^{-1} and for the first time for monolayer MoS2_\mathrm{2}, χs(3)=1.7×1028|\chi_s^{(3)}|=1.7\times10^{-28} m3^3 V2^{-2}. These sheet susceptibilities correspond to effective bulk nonlinear susceptibility values of χb(2)=2.9×1011|\chi_{b}^{(2)}|=2.9\times10^{-11} m V1^{-1} and χb(3)=2.4×1019|\chi_{b}^{(3)}|=2.4\times10^{-19} m2^2 V2^{-2}, accounting for the sheet thickness. Experimental comparisons between MoS2_\mathrm{2} and graphene are also performed, demonstrating \sim3.4 times stronger third-order sheet nonlinearity in monolayer MoS2_\mathrm{2}, highlighting the material's potential for nonlinear photonics in the telecommunications C band.Comment: Accepted by 2D Materials, 28th Oct 201

    Precision Measurement of the Neutron Twist-3 Matrix Element d(2)(n): Probing Color Forces

    Get PDF
    Double-spin asymmetries and absolute cross sections were measured at large Bjorken x (0.25 of 3.21 and 4.32 GeV2/c(2), with an absolute precision of about 10(-5). Our results are found to be in agreement with lattice QCD calculations and resolve the disagreement found with previous data at \u3c Q(2)\u3e = 5 GeV2/c(2). Combining d(2)(n) and a newly extracted twist-4 matrix element f(2)(n), the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 30 MeV/fm in magnitude

    Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser

    Get PDF
    Abstract We fabricate a free-standing few-layer molybdenum disulfide (MoS2)-polymer composite by liquid phase exfoliation of chemically pristine MoS2 crystals and use this to demonstrate a wideband tunable, ultrafast mode-locked fiber laser. Stable, picosecond pulses, tunable from 1,535 nm to 1,565 nm, are generated, corresponding to photon energies below the MoS2 material bandgap. These results contribute to the growing body of work studying the nonlinear optical properties of transition metal dichalcogenides that present new opportunities for ultrafast photonic applications.MZ wishes to acknowledge funding from the EPSRC (EP/K03705), RCTH from the EPSRC (EP/G037221/1), GH from a CSC Cambridge International Scholarship, EJRK from the Royal Academy of Engineering (RAEng), through a RAEng Fellowship and TH from the RAEng (Graphlex).This is the final version. It was first published by Springer at http://link.springer.com/article/10.1007%2Fs12274-014-0637-

    Measurements of d(2)(n) and A(1)(n) : Probing the neutron spin structure

    Get PDF
    We report on the results of the E06-014 experiment performed at Jefferson Lab in Hall A, where a precision measurement of the twist-3 matrix element d(2) of the neutron (d(2)(n)) was conducted. The quantity d(2)(n) represents the average color Lorentz force a struck quark experiences in a deep inelastic electron scattering event off a neutron due to its interaction with the hadronizing remnants. This color force was determined from a linear combination of the third moments of the He-3 spin structure functions, g(1) and g(2), after nuclear corrections had been applied to these moments. The structure functions were obtained from a measurement of the unpolarized cross section and of double-spin asymmetries in the scattering of a longitudinally polarized electron beam from a transversely and a longitudinally polarized He-3 target. The measurement kinematics included two average Q(2) bins of 3.2 GeV2 and 4.3 GeV2, and Bjorken-x 0.25 = 3.2 GeV2, and even smaller for \u3c Q(2)\u3e = 4.3 GeV2, consistent with the results of a lattice QCD calculation. The twist-4 matrix element f(2)(n) was extracted by combining our measured d(2)(n) with the world data on the first moment in x of g(1)(n), Gamma(n)(1). We found f(2)(n) to be roughly an order of magnitude larger than d(2)(n). Utilizing the extracted d(2)(n) and f(2)(n) data, we separated the Lorentz color force into its electric and magnetic components, F-E(y,n) and F-B(y,n), and found them to be equal and opposite in magnitude, in agreement with the predictions from an instanton model but not with those from QCD sum rules. Furthermore, using the measured double-spin asymmetries, we have extracted the virtual photon-nucleon asymmetry on the neutron A(1)(n), the structure function ratio g(1)(n)/F-1(n), and the quark ratios (Delta u + Delta(u) over bar)/(u + (u) over bar) and (Delta d + Delta(d) over bar)/(d + (d) over bar). These results were found to be consistent with deep-inelastic scattering world data and with the prediction of the constituent quark model but at odds with the perturbative quantum chromodynamics predictions at large x

    Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization

    Get PDF
    BackgroundEntF is a 142 kDa four domain (condensation-adenylationpeptidyl carrier protein-thioesterase) nonribosomal peptide synthetase (NRPS) enzyme that assembles the Escherichia coli N-acyl-serine trilactone siderophore enterobactin from serine, dihydroxybenzoate (DHB) and ATP with three other enzymes (EntB, EntD and EntE). To assess how EntF forms three ester linkages and cyclotrimerizes the covalent acyl enzyme DHB-Ser-S-PCP (peptidyl carrier protein) intermediate, we mutated residues of the proposed catalytic Ser-His-Asp triad of the thioesterase (TE) domain.ResultsThe Ser1138→Cys mutant (kcat decreased 1000-fold compared with wild-type EntF) releases both enterobactin (75%) and linear (DHB-Ser)2 dimer (25%) as products. The HiResultThe Ser1138→Cys mutant (kcat decreased 1000-fold compared with wild-type EntF) releases both enterobactin (75%) and linear (DHB-Ser)2 dimer (25%) as products. The His1271→Ala mutant (kcat decreased 10,000-fold compared with wild-type EntF) releases only enterobactin, but accumulates both DHB-Ser-O-TE and (DHB-Ser)2-O-TE acyl enzyme intermediates. Electrospray ionization and Fourier transform mass spectrometry of proteolytic digests were used to analyze the intermediates.71→Ala mutant (kcat decreased 10,000-fold compared with wild-type EntF) releases only enterobactin, but accumulates both DHB-Ser-O-TE and (DHB-Ser)2-O-TE acyl enzyme intermediates. Electrospray ionization and Fourier transform mass spectrometry of proteolytic digests were used to analyze the intermediates.ConclusionsThese results establish that the TE domain of EntF is both a cyclotrimerizing lactone synthetase and an elongation catalyst for ester-bond formation between covalently tethered DHB-Ser moieties, a new function for chain-termination TE domains found at the carboxyl termini of multimodular NRPSs and polyketide synthases
    corecore