18,045 research outputs found

    Ten Years of Solar Change as Monitored by SBUV and SBUV/2

    Get PDF
    Observations of the Sun by the Solar Backscatter Ultraviolet (SBUV) instrument aboard Nimbus 7 and the SBUV/2 instrument aboard NOAA-9 reveal variations in the solar irradiance from 1978, to 1988. The maximum to minimum solar change estimated from the Heath and Schlesinger Mg index and wavelength scaling factors is about 4 percent from 210 to 260 nm and 8 percent for 180 to 210 nm; direct measurements of the solar change give values of 1 to 3 percent and 5 to 7 percent, respectively, for the same wavelength range. Solar irradiances were high from the start of observations, late in 1978, until 1983, declined until early 1985, remained approximately constant until mid-1987, and then began to rise. Peak-to-peak 27-day rotational modulation amplitudes were as large as 6 percent at solar maximum and 1 to 2 percent at solar minimum. During occasional intervals of the 1979 to 1983 maximum and again during 1988, the dominant rotational modulation period was 13.5 days. Measurements near 200 to 205 nm show the same rotational modulation behavior but cannot be used to track long-term changes in the Sun because of uncertainties in the characterization of long-term instrument sensitivity changes

    Scanning Capacitance Spectroscopy on n\u3csup\u3e+\u3c/sup\u3e-p Asymmetrical Junctions in Multicrystalline Si Solar Cells

    Get PDF
    We report on a scanning capacitance spectroscopy (SCS) study on the n+-p junction of multicrystalline silicon solar cells. We found that the spectra taken at space intervals of ∼10 nm exhibit characteristic features that depend strongly on the location relative to the junction. The capacitance-voltage spectra exhibit a local minimum capacitance value at the electrical junction, which allows the junction to be identified with ∼10-nm resolution. The spectra also show complicated transitions from the junction to the n-region with two local capacitance minima on the capacitance-voltage curves; similar spectra to that have not been previously reported in the literature. These distinctive spectra are due to uneven carrier-flow from both the n- and p-sides. Our results contribute significantly to the SCS study on asymmetrical junctions

    Efficient implementation of the Gutzwiller variational method

    Full text link
    We present a self-consistent numerical approach to solve the Gutzwiller variational problem for general multi-band models with arbitrary on-site interaction. The proposed method generalizes and improves the procedure derived by Deng et al., Phys. Rev. B. 79 075114 (2009), overcoming the restriction to density-density interaction without increasing the complexity of the computational algorithm. Our approach drastically reduces the problem of the high-dimensional Gutzwiller minimization by mapping it to a minimization only in the variational density matrix, in the spirit of the Levy and Lieb formulation of DFT. For fixed density the Gutzwiller renormalization matrix is determined as a fixpoint of a proper functional, whose evaluation only requires ground-state calculations of matrices defined in the Gutzwiller variational space. Furthermore, the proposed method is able to account for the symmetries of the variational function in a controlled way, reducing the number of variational parameters. After a detailed description of the method we present calculations for multi-band Hubbard models with full (rotationally invariant) Hund's rule on-site interaction. Our analysis shows that the numerical algorithm is very efficient, stable and easy to implement. For these reasons this method is particularly suitable for first principle studies -- e.g., in combination with DFT -- of many complex real materials, where the full intra-atomic interaction is important to obtain correct results.Comment: 19 pages, 7 figure

    The geometry of manifolds and the perception of space

    Full text link
    This essay discusses the development of key geometric ideas in the 19th century which led to the formulation of the concept of an abstract manifold (which was not necessarily tied to an ambient Euclidean space) by Hermann Weyl in 1913. This notion of manifold and the geometric ideas which could be formulated and utilized in such a setting (measuring a distance between points, curvature and other geometric concepts) was an essential ingredient in Einstein's gravitational theory of space-time from 1916 and has played important roles in numerous other theories of nature ever since.Comment: arXiv admin note: substantial text overlap with arXiv:1301.064

    Improving Performance of Iterative Methods by Lossy Checkponting

    Get PDF
    Iterative methods are commonly used approaches to solve large, sparse linear systems, which are fundamental operations for many modern scientific simulations. When the large-scale iterative methods are running with a large number of ranks in parallel, they have to checkpoint the dynamic variables periodically in case of unavoidable fail-stop errors, requiring fast I/O systems and large storage space. To this end, significantly reducing the checkpointing overhead is critical to improving the overall performance of iterative methods. Our contribution is fourfold. (1) We propose a novel lossy checkpointing scheme that can significantly improve the checkpointing performance of iterative methods by leveraging lossy compressors. (2) We formulate a lossy checkpointing performance model and derive theoretically an upper bound for the extra number of iterations caused by the distortion of data in lossy checkpoints, in order to guarantee the performance improvement under the lossy checkpointing scheme. (3) We analyze the impact of lossy checkpointing (i.e., extra number of iterations caused by lossy checkpointing files) for multiple types of iterative methods. (4)We evaluate the lossy checkpointing scheme with optimal checkpointing intervals on a high-performance computing environment with 2,048 cores, using a well-known scientific computation package PETSc and a state-of-the-art checkpoint/restart toolkit. Experiments show that our optimized lossy checkpointing scheme can significantly reduce the fault tolerance overhead for iterative methods by 23%~70% compared with traditional checkpointing and 20%~58% compared with lossless-compressed checkpointing, in the presence of system failures.Comment: 14 pages, 10 figures, HPDC'1

    PCR for the detection of pathogens in neonatal early onset sepsis.

    Get PDF
    BACKGROUND: A large proportion of neonates are treated for presumed bacterial sepsis with broad spectrum antibiotics even though their blood cultures subsequently show no growth. This study aimed to investigate PCR-based methods to identify pathogens not detected by conventional culture. METHODS: Whole blood samples of 208 neonates with suspected early onset sepsis were tested using a panel of multiplexed bacterial PCRs targeting Streptococcus pneumoniae, Streptococcus agalactiae (GBS), Staphylococcus aureus, Streptococcus pyogenes (GAS), Enterobacteriaceae, Enterococcus faecalis, Enterococcus faecium, Ureaplasma parvum, Ureaplasma urealyticum, Mycoplasma hominis and Mycoplasma genitalium, a 16S rRNA gene broad-range PCR and a multiplexed PCR for Candida spp. RESULTS: Two-hundred and eight samples were processed. In five of those samples, organisms were detected by conventional culture; all of those were also identified by PCR. PCR detected bacteria in 91 (45%) of the 203 samples that did not show bacterial growth in culture. S. aureus, Enterobacteriaceae and S. pneumoniae were the most frequently detected pathogens. A higher bacterial load detected by PCR was correlated positively with the number of clinical signs at presentation. CONCLUSION: Real-time PCR has the potential to be a valuable additional tool for the diagnosis of neonatal sepsis

    Upward Three-Dimensional Grid Drawings of Graphs

    Full text link
    A \emph{three-dimensional grid drawing} of a graph is a placement of the vertices at distinct points with integer coordinates, such that the straight line segments representing the edges do not cross. Our aim is to produce three-dimensional grid drawings with small bounding box volume. We prove that every nn-vertex graph with bounded degeneracy has a three-dimensional grid drawing with O(n3/2)O(n^{3/2}) volume. This is the broadest class of graphs admiting such drawings. A three-dimensional grid drawing of a directed graph is \emph{upward} if every arc points up in the z-direction. We prove that every directed acyclic graph has an upward three-dimensional grid drawing with (n3)(n^3) volume, which is tight for the complete dag. The previous best upper bound was O(n4)O(n^4). Our main result is that every cc-colourable directed acyclic graph (cc constant) has an upward three-dimensional grid drawing with O(n2)O(n^2) volume. This result matches the bound in the undirected case, and improves the best known bound from O(n3)O(n^3) for many classes of directed acyclic graphs, including planar, series parallel, and outerplanar
    corecore