308 research outputs found

    Fine Gradings of Low-Rank Complex Lie Algebras and of Their Real Forms

    No full text
    In this review paper, we treat the topic of fine gradings of Lie algebras. This concept is important not only for investigating the structural properties of the algebras, but, on top of that, the fine gradings are often used as the starting point for studying graded contractions or deformations of the algebras. One basic question tackled in the work is the relation between the terms 'grading' and 'group grading'. Although these terms have originally been claimed to coincide for simple Lie algebras, it was revealed later that the proof of this assertion was incorrect. Therefore, the crucial statements about one-to-one correspondence between fine gradings and MAD-groups had to be revised and re-formulated for fine group gradings instead. However, there is still a hypothesis that the terms 'grading' and 'group grading' coincide for simple complex Lie algebras. We use the MAD-groups as the main tool for finding fine group gradings of the complex Lie algebras A₃ = D₃, B₂ = C₂, and D₂. Besides, we develop also other methods for finding the fine (group) gradings. They are useful especially for the real forms of the complex algebras, on which they deliver richer results than the MAD-groups. Systematic use is made of the faithful representations of the three Lie algebras by 4 × 4 matrices: A₃ = sl(4,C), C₂ = sp(4,C), D₂ = o(4,C). The inclusions sl(4,C) É sp(4,C) and sl(4,C) É o(4,C) are important in our presentation, since they allow to employ one of the methods which considerably simplifies the calculations when finding the fine group gradings of the subalgebras sp(4,C) and o(4,C)

    Promastigote secretory gel from natural and unnatural sand fly vectors exacerbate Leishmania major and Leishmania tropica cutaneous leishmaniasis in mice.

    Get PDF
    Leishmania rely heavily on glycans to complete their digenetic life cycle in both mammalian and phlebotomine sand fly hosts. Leishmania promastigotes secrete a proteophosphoglycan-rich gel (Promastigote Secretory Gel, PSG) that is regurgitated during transmission and can exacerbate infection in the skin. Here we explored the role of PSG from natural Leishmania-sand fly vector combinations by obtaining PSG from Leishmania (L.) major-infected Phlebotomus (P.) papatasi and P. duboscqi and L. tropica-infected P. arabicus. We found that, in addition to the vector's saliva, the PSG from L. major and L. tropica potently exacerbated cutaneous infection in BALB/c mice, improved the probability of developing a patent cutaneous lesion, parasite growth and the evolution of the lesion. Of note, the presence of PSG in the inoculum more than halved the prepatent period of cutaneous L. tropica infection from an average of 32 weeks to 13 weeks. In addition, L. major and L. tropica PSG extracted from the permissive experimental vector, Lutzomyia (Lu.) longipalpis, also exacerbated infections in mice. These results reinforce and extend the hypothesis that PSG is an important and evolutionarily conserved component of Leishmania infection that can be used to facilitate experimental infection for drug and vaccine screening

    Genotoxic mechanisms for the carcinogenicity of the environmental pollutants and carcinogens o-anisidine and 2-nitroanisole follow from adducts generated by their metabolite N-(2-methoxyphenyl)-hydroxylamine with deoxyguanosine in DNA

    Get PDF
    An aromatic amine, o-anisidine (2-methoxyaniline) and its oxidative counterpart, 2-nitroanisole (2-methoxynitrobenzene), are the industrial and environmental pollutants causing tumors of the urinary bladder in rats and mice. Both carcinogens are activated to the same proximate carcinogenic metabolite, N-(2-methoxyphenyl)hydroxylamine, which spontaneously decomposes to nitrenium and/or carbenium ions responsible for formation of deoxyguanosine adducts in DNA in vitro and in vivo. In other words, generation of N-(2-methoxyphenyl)hydroxylamine is responsible for the genotoxic mechanisms of the o-anisidine and 2-nitroanisole carcinogenicity. Analogous enzymes of human and rat livers are capable of activating these carcinogens. Namely, human and rat cytochorme P4502E1 is the major enzyme oxidizing o-anisidine to N-(2-methoxyphenyl)hydroxylamine, while xanthine oxidase of both species reduces 2-nitroanisole to this metabolite. Likewise, O-demethylation of 2-nitroanisole, which is the detoxication pathway of its metabolism, is also catalyzed by the same human and rat enzyme, cytochorme P450 2E1. The results demonstrate that the rat is a suitable animal model mimicking the fate of both carcinogens in humans and suggest that both compounds are potential carcinogens also for humans

    Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay

    Get PDF
    Sensitive, specific, rapid, inexpensive and easy-to-use nucleic acid tests for use at the point-of-need are critical for the emerging field of personalised medicine for which companion diagnostics are essential, as well as for application in low resource settings. Here we report on the development of a point-of-care nucleic acid lateral flow test for the direct detection of isothermally amplified DNA. The recombinase polymerase amplification method is modified slightly to use tailed primers, resulting in an amplicon with a duplex flanked by two single stranded DNA tails. This tailed amplicon facilitates detection via hybridisation to a surface immobilised oligonucleotide capture probe and a gold nanoparticle labelled reporter probe. A detection limit of 1 7 10−11 M (190 amol), equivalent to 8.67 7 105 copies of DNA was achieved, with the entire assay, both amplification and detection, being completed in less than 15 minutes at a constant temperature of 37 \ub0C. The use of the tailed primers obviates the need for hapten labelling and consequent use of capture and reporter antibodies, whilst also avoiding the need for any post-amplification processing for the generation of single stranded DNA, thus presenting an assay that can facilely find application at the point of need
    corecore