56 research outputs found
Three discipline collaborative radiation therapy special debate: All head and neck cancer patients with intact tumors/nodes should have scheduled adaptive replanning performed at least once during the course of radiotherapy
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149241/1/acm212587_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149241/2/acm212587.pd
Wetlands for wastewater treatment and subsequent recycling of treated effluent : a review
Due to water scarcity challenges around the world, it is essential to think about non-conventional water resources to address the increased demand in clean freshwater. Environmental and public health problems may result from insufficient provision of sanitation and wastewater disposal facilities. Because of this, wastewater treatment and recycling methods will be vital to provide sufficient freshwater in the coming decades, since water resources are limited and more than 70% of water are consumed for irrigation purposes. Therefore, the application of treated wastewater for agricultural irrigation has much potential, especially when incorporating the reuse of nutrients like nitrogen and phosphorous, which are essential for plant production. Among the current treatment technologies applied in urban wastewater reuse for irrigation, wetlands were concluded to be the one of the most suitable ones in terms of pollutant removal and have advantages due to both low maintenance costs and required energy. Wetland behavior and efficiency concerning wastewater treatment is mainly linked to macrophyte composition, substrate, hydrology, surface loading rate, influent feeding mode, microorganism availability, and temperature. Constructed wetlands are very effective in removing organics and suspended solids, whereas the removal of nitrogen is relatively low, but could be improved by using a combination of various types of constructed wetlands meeting the irrigation reuse standards. The removal of phosphorus is usually low, unless special media with high sorption capacity are used. Pathogen removal from wetland effluent to meet irrigation reuse standards is a challenge unless supplementary lagoons or hybrid wetland systems are used
On-Device Intelligence for AI-Enabled Bio-Inspired Autonomous Underwater Vehicles (AUVs)
This paper introduces an innovative approach to underwater exploration by integrating Artificial Intelligence (AI) into Autonomous Underwater Vehicles (AUVs). This collaboration between AI and biomimicry marks a new era for AUVs, enabling them to emulate marine creatures’ graceful and efficient movements. By infusing AI capabilities into AUVs, AUVs are empowered to learn and adapt, making autonomous real-time decisions without human intervention. This dynamic integration equips AUVs to effectively navigate complex underwater terrains, evade obstacles, and seamlessly interact with marine life. Inspired by the remarkable propulsion mechanisms found in marine organisms, this work proposes a pioneering propulsion system tailored for AUVs. Taking cues from the locomotion of creatures like cuttlefish, the biomechanics is translated into a robotic propulsion system. The result is a fluid and energy-efficient propulsion method that mitigates the harmful effects of cavitation, thereby reducing noise pollution and minimizing disruption to marine ecosystems. This research evaluates the performance of on-device AI models for analyzing the sensing environment around the AUV and taking real-time images. This automated sensing and navigation method can help the AUVs independently navigate to the desired location along the water table. The propulsion is achieved by building a crankshaft mechanism and a unified mechanical design to convert rotational motion from a motor into a sinusoidal wave motion to replicate the cuttlefish locomotion pattern. The proposed underwater vehicle, Aquabot, is designed using Fusion 360 simulation and ANSYS software. The results demonstrate the accuracy and efficiency of the autonomous underwater vehicle based on the environmental conditions, thus reducing energy consumption and enhancing aquatic vehicle efficiency
Hypertrophic Stimulation Increases β-actin Dynamics in Adult Feline Cardiomyocytes
The myocardium responds to hemodynamic stress through cellular growth and organ hypertrophy. The impact of cytoskeletal elements on this process, however, is not fully understood. While α-actin in cardiomyocytes governs muscle contraction in combination with the myosin motor, the exact role of β-actin has not been established. We hypothesized that in adult cardiomyocytes, as in non-myocytes, β-actin can facilitate cytoskeletal rearrangement within cytoskeletal structures such as Z-discs. Using a feline right ventricular pressure overload (RVPO) model, we measured the level and distribution of β-actin in normal and pressure overloaded myocardium. Resulting data demonstrated enriched levels of β-actin and enhanced translocation to the Triton-insoluble cytoskeletal and membrane skeletal complexes. In addition, RVPO in vivo and in vitro hypertrophic stimulation with endothelin (ET) or insulin in isolated adult cardiomyocytes enhanced the content of polymerized fraction (F-actin) of β-actin. To determine the localization and dynamics of β-actin, we adenovirally expressed GFP-tagged β-actin in isolated adult cardiomyocytes. The ectopically expressed β-actin-GFP localized to the Z-discs, costameres, and cell termini. Fluorescence recovery after photobleaching (FRAP) measurements of β-actin dynamics revealed that β-actin at the Z-discs is constantly being exchanged with β-actin from cytoplasmic pools and that this exchange is faster upon hypertrophic stimulation with ET or insulin. In addition, in electrically stimulated isolated adult cardiomyocytes, while β-actin overexpression improved cardiomyocyte contractility, immunoneutralization of β-actin resulted in a reduced contractility suggesting that β-actin could be important for the contractile function of adult cardiomyocytes. These studies demonstrate the presence and dynamics of β-actin in the adult cardiomyocyte and reinforce its usefulness in measuring cardiac cytoskeletal rearrangement during hypertrophic stimulation
Strategies for waste management in small and medium towns of developing countries: A case study of India
This paper evaluates the issues of waste management in small and medium towns (SMTs) (with population in the range of 10,000-100,000) of India, and identifies the need for a multi-disciplinary approach encompassing technological, economic and financial aspects of the issues to effect improvements. A comprehensive set of cross-disciplinary strategies is suggested to improve the prevailing conditions with environmentally appropriate, economically efficient and financially self-sustaining waste management services. Based on a case study of four SMTs in the State of Tamil Nadu in India, this paper evaluates the application of the suggested strategies and offers policy recommendations
Wastewater collection and treatment technologies for semi-urban areas of India: A case study
Sanitation and wastewater management problems in small and medium towns in India (referred to as "semi-urban areas"-SUAs) are distinctly different from those of large cities or rural villages. There is an apparent lack of choices of appropriate sanitation options for these semi-urban areas, leading them to adopt on-site sanitation technologies. A field study of four such small towns in India was conducted to evaluate the suitability of available low-cost wastewater collection and treatment technologies, in light of their current practice. Based on the field study, this paper suggests a system comprising "combined surface sewers" and "reed-bed channel" for collection and treatment of wastewater for semi-urban areas, that can utilize all the existing infrastructure to effect better sanitation at lower costs. The suggested system involves converting the existing open wastewater collection drains on the road sides, as "decentralized" networks of covered drains with simple structural modifications to collect both wastewater and stormwater; and, converting the large open drains on the outskirts of SUAs that carry wastewater to agricultural fields, as gravel media filled beds planted with local reeds. Cost estimates for the towns studied indicate this system to be over 70% cheaper compared to conventional collection and treatment systems
Active Control of Crack Propagation in Laminated Composite Plate Embedded with Piezoelectric Material
Simple colorimetric chemosensors for detection F- ion based on phenyl urea derivatives
- …
