30 research outputs found

    Hypertrophic Stimulation Increases β-actin Dynamics in Adult Feline Cardiomyocytes

    Get PDF
    The myocardium responds to hemodynamic stress through cellular growth and organ hypertrophy. The impact of cytoskeletal elements on this process, however, is not fully understood. While α-actin in cardiomyocytes governs muscle contraction in combination with the myosin motor, the exact role of β-actin has not been established. We hypothesized that in adult cardiomyocytes, as in non-myocytes, β-actin can facilitate cytoskeletal rearrangement within cytoskeletal structures such as Z-discs. Using a feline right ventricular pressure overload (RVPO) model, we measured the level and distribution of β-actin in normal and pressure overloaded myocardium. Resulting data demonstrated enriched levels of β-actin and enhanced translocation to the Triton-insoluble cytoskeletal and membrane skeletal complexes. In addition, RVPO in vivo and in vitro hypertrophic stimulation with endothelin (ET) or insulin in isolated adult cardiomyocytes enhanced the content of polymerized fraction (F-actin) of β-actin. To determine the localization and dynamics of β-actin, we adenovirally expressed GFP-tagged β-actin in isolated adult cardiomyocytes. The ectopically expressed β-actin-GFP localized to the Z-discs, costameres, and cell termini. Fluorescence recovery after photobleaching (FRAP) measurements of β-actin dynamics revealed that β-actin at the Z-discs is constantly being exchanged with β-actin from cytoplasmic pools and that this exchange is faster upon hypertrophic stimulation with ET or insulin. In addition, in electrically stimulated isolated adult cardiomyocytes, while β-actin overexpression improved cardiomyocyte contractility, immunoneutralization of β-actin resulted in a reduced contractility suggesting that β-actin could be important for the contractile function of adult cardiomyocytes. These studies demonstrate the presence and dynamics of β-actin in the adult cardiomyocyte and reinforce its usefulness in measuring cardiac cytoskeletal rearrangement during hypertrophic stimulation

    Wetlands for wastewater treatment and subsequent recycling of treated effluent : a review

    Get PDF
    Due to water scarcity challenges around the world, it is essential to think about non-conventional water resources to address the increased demand in clean freshwater. Environmental and public health problems may result from insufficient provision of sanitation and wastewater disposal facilities. Because of this, wastewater treatment and recycling methods will be vital to provide sufficient freshwater in the coming decades, since water resources are limited and more than 70% of water are consumed for irrigation purposes. Therefore, the application of treated wastewater for agricultural irrigation has much potential, especially when incorporating the reuse of nutrients like nitrogen and phosphorous, which are essential for plant production. Among the current treatment technologies applied in urban wastewater reuse for irrigation, wetlands were concluded to be the one of the most suitable ones in terms of pollutant removal and have advantages due to both low maintenance costs and required energy. Wetland behavior and efficiency concerning wastewater treatment is mainly linked to macrophyte composition, substrate, hydrology, surface loading rate, influent feeding mode, microorganism availability, and temperature. Constructed wetlands are very effective in removing organics and suspended solids, whereas the removal of nitrogen is relatively low, but could be improved by using a combination of various types of constructed wetlands meeting the irrigation reuse standards. The removal of phosphorus is usually low, unless special media with high sorption capacity are used. Pathogen removal from wetland effluent to meet irrigation reuse standards is a challenge unless supplementary lagoons or hybrid wetland systems are used

    Phytoremediation using Aquatic Plants

    Get PDF

    Strategies for waste management in small and medium towns of developing countries: A case study of India

    Full text link
    This paper evaluates the issues of waste management in small and medium towns (SMTs) (with population in the range of 10,000-100,000) of India, and identifies the need for a multi-disciplinary approach encompassing technological, economic and financial aspects of the issues to effect improvements. A comprehensive set of cross-disciplinary strategies is suggested to improve the prevailing conditions with environmentally appropriate, economically efficient and financially self-sustaining waste management services. Based on a case study of four SMTs in the State of Tamil Nadu in India, this paper evaluates the application of the suggested strategies and offers policy recommendations

    Wastewater collection and treatment technologies for semi-urban areas of India: A case study

    Full text link
    Sanitation and wastewater management problems in small and medium towns in India (referred to as "semi-urban areas"-SUAs) are distinctly different from those of large cities or rural villages. There is an apparent lack of choices of appropriate sanitation options for these semi-urban areas, leading them to adopt on-site sanitation technologies. A field study of four such small towns in India was conducted to evaluate the suitability of available low-cost wastewater collection and treatment technologies, in light of their current practice. Based on the field study, this paper suggests a system comprising "combined surface sewers" and "reed-bed channel" for collection and treatment of wastewater for semi-urban areas, that can utilize all the existing infrastructure to effect better sanitation at lower costs. The suggested system involves converting the existing open wastewater collection drains on the road sides, as "decentralized" networks of covered drains with simple structural modifications to collect both wastewater and stormwater; and, converting the large open drains on the outskirts of SUAs that carry wastewater to agricultural fields, as gravel media filled beds planted with local reeds. Cost estimates for the towns studied indicate this system to be over 70% cheaper compared to conventional collection and treatment systems

    Structural and functional consequences of peptide-carbohydrate mimicry. crystal structure of a carbohydrate-mimicking peptide bound to concanavalin A

    No full text
    The functional consequences of peptide-carbohydrate mimicry were analyzed on the basis of the crystal structure of concanavalin A (ConA) in complex with a carbohydrate-mimicking peptide, DVFYPYPYASGS. The peptide binds to the non-crystallographically related monomers of two independent dimers of ConA in two different modes, in slightly different conformations, demonstrating structural adaptability in ConA-peptide recognition. In one mode, the peptide has maximum interactions with ConA, and in the other, it shows relatively fewer contacts within this site but significant contacts with the symmetry-related subunit. Neither of the peptide binding sites overlaps with the structurally characterized mannose and trimannose binding sites on ConA. Despite this, the functional mimicry between the peptide and carbohydrate ligands was evident. The peptide-inhibited ConA induced T cell proliferation in a dose-dependent manner. The effect of the designed analogs of the peptide on ConA-induced T cell proliferation and their recognition by the antibody response against a-d-mannopyranoside indicate a role for aromatic residues in functional mimicry. Although the functional mimicry was observed between the peptide and carbohydrate moieties, the crystal structure of the ConA-peptide complex revealed that the two peptide binding sites are independent of the methyl a-d-mannopyranoside binding site

    Heterostructures of mesoporous TiO 2 and SnO 2 nanocatalyst for improved electrochemical oxidation ability of vitamin B6 in pharmaceutical tablets

    No full text
    The detection of water soluble vitamins using electrochemical method is widely established in pharmaceutical quality control laboratories, and especially the recent advances in hybrid heterostrucure nanomaterials has devoted to enhance the significant analytical parameters like sensitivity, selectivity and fast response time. Herein, we report the synthesis of a hybrid heterostructure comprising SnO 2 nanoparticles supported mesoporous TiO 2 , and the obtained nanocomposite were fabricated over glassy carbon electrode (GCE) for the electrochemical oxidation of vitamin B 6 in pharmaceutical tablets. The designed SnO 2 -TiO 2 /GC modified electrode exhibits well-defined oxidation peak with lowering over-potential and larger signal response compared to the pristine counterparts, and it is mainly due to the formation of abundant active surface layer offered by SnO 2 cocatalyst, and thus significantly enhances the electrochemical surface area. Differential pulse voltam
    corecore