33 research outputs found

    PKD1 and PKD2 mutations in Slovenian families with autosomal dominant polycystic kidney disease

    Get PDF
    BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous disorder caused by mutations in at least two different loci. Prior to performing mutation screening, if DNA samples of sufficient number of family members are available, it is worthwhile to assign the gene involved in disease progression by the genetic linkage analysis. METHODS: We collected samples from 36 Slovene ADPKD families and performed linkage analysis in 16 of them. Linkage was assessed by the use of microsatellite polymorphic markers, four in the case of PKD1 (KG8, AC2.5, CW3 and CW2) and five for PKD2 (D4S1534, D4S2929, D4S1542, D4S1563 and D4S423). Partial PKD1 mutation screening was undertaken by analysing exons 23 and 31–46 and PKD2 . RESULTS: Lod scores indicated linkage to PKD1 in six families and to PKD2 in two families. One family was linked to none and in seven families linkage to both genes was possible. Partial PKD1 mutation screening was performed in 33 patients (including 20 patients from the families where linkage analysis could not be performed). We analysed PKD2 in 2 patients where lod scores indicated linkage to PKD2 and in 7 families where linkage to both genes was possible. We detected six mutations and eight polymorphisms in PKD1 and one mutation and three polymorphisms in PKD2. CONCLUSION: In our study group of ADPKD patients we detected seven mutations: three frameshift, one missense, two nonsense and one putative splicing mutation. Three have been described previously and 4 are novel. Three newly described framesfift mutations in PKD1 seem to be associated with more severe clinical course of ADPKD. Previously described nonsense mutation in PKD2 seems to be associated with cysts in liver and milder clinical course

    Novel APC mutations in Czech and Slovak FAP families: clinical and genetic aspects

    Get PDF
    BACKGROUND: Germline mutations in the adenomatous polyposis gene (APC) result in familial adenomatous polyposis (FAP). FAP is an autosomal dominantly inherited disorder predisposing to colorectal cancer. Typical FAP is characterized by hundreds to thousands of colorectal adenomatous polyps and by several extracolonic manifestations. An attenuated form of polyposis (AFAP) is characterized by less than 100 adenomas and later onset of the disease. METHODS: Here, we analyzed the APC gene for germline mutations in 59 Czech and 15 Slovak FAP patients. In addition, 50 apparently APC mutation negative Czech probands and 3 probands of Slovak origin were screened for large deletions encompassing the APC gene. Mutation screening was performed using denaturing gradient gel electrophoresis and/or protein truncation test. DNA fragments showing an aberrant electrophoretic banding pattern were sequenced. Screening for large deletions was performed by multiplex ligation dependent probe amplification. The extent of deletions was analyzed using following microsatellite markers: D5S299, D5S82, D5S134 and D5S346. RESULTS: In the set of Czech and Slovak patients, we identified 46 germline mutations among 74 unrelated probands. Total mutation capture is 62,2% including large deletions. Thirty seven mutations were detected in 49 patients presenting a classical FAP phenotype (75,5%) and 9 mutations in 25 patients with attenuated FAP (36%). We report 20 novel germline APC mutations and 3 large deletions (6%) encompassing the whole-gene deletions and/or exon 14 deletion. In the patients with novel mutations, correlations of the mutation localization are discussed in context of the classical and/or attenuated phenotype of the disease. CONCLUSION: The results of the molecular genetic testing are used both in the establishment of the predictive diagnosis and in the clinical management of patients. In some cases this study has also shown the difficulty to classify clinically between the classical and the attenuated form of FAP according to the established criteria. Interfamilial and/or intrafamilial phenotype variability was also confirmed in some cases which did not fit well with predicted genotype-phenotype correlation. All these findings have to be taken into consideration both in the genetic counselling and in the patient care

    Molecular analysis of the APC and MUTYH genes in Galician and Catalonian FAP families: a different spectrum of mutations?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Familial adenomatous polyposis (FAP) is an autosomal dominant-inherited colorectal cancer syndrome, caused by germline mutations in the <it>APC </it>gene. Recently, biallelic mutations in <it>MUTYH </it>have also been identified in patients with multiple colorectal adenomas and in <it>APC</it>-negative patients with FAP. The aim of this work is therefore to determine the frequency of <it>APC </it>and <it>MUTYH </it>mutations among FAP families from two Spanish populations.</p> <p>Methods</p> <p>Eighty-two unrelated patients with classical or attenuated FAP were screened for <it>APC </it>germline mutations. <it>MUTYH </it>analysis was then conducted in those <it>APC</it>-negative families and in 9 additional patients from a previous study. Direct sequencing, SSCP analysis and TaqMan genotyping were used to identify point and frameshift mutations, meanwhile large rearrangements in the <it>APC </it>gene were screened by multiplex ligation-dependent probe amplification (MLPA).</p> <p>Results</p> <p><it>APC </it>germline mutations were found in 39% of the patients and, despite the great number of genetic variants described so far in this gene, seven new mutations were identified. The two hotspots at codons 1061 and 1309 of the <it>APC </it>gene accounted for 9,4% of the <it>APC</it>-positive families, although they were underrepresented in Galician samples. The deletion at codon 1061 was not found in 19 <it>APC</it>-positive Galician patients but represented 23% of the Catalonian positive families (p = 0,058). The same trend was observed at codon 1309, even though statistical analysis showed no significance between populations. Twenty-four percent of the <it>APC</it>-negative patients carried biallelic <it>MUTYH </it>germline mutations, and showed an attenuated polyposis phenotype generally without extracolonic manifestations. New genetic variants were found, as well as the two hotspots already reported (p.Tyr165Cys and p.Gly382Asp).</p> <p>Conclusion</p> <p>The results we present indicate that in Galician patients the frequency of the hotspot at codon 1061 in <it>APC </it>differs significantly from the Catalonian and also other Caucasian populations. Similar results had already been obtained in a previous study and could be due to the genetic isolation of the Galician population. <it>MUTYH </it>analysis is also recommended for all <it>APC</it>-negative families, even if a recessive inheritance is not confirmed.</p

    Identification of novel mutations in Chinese Hans with autosomal dominant polycystic kidney disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited renal disease with an incidence of 1 in 400 to 1000. The disease is genetically heterogeneous, with two genes identified: <it>PKD1 </it>(16p13.3) and <it>PKD2 </it>(4q21). Molecular diagnosis of the disease in at-risk individuals is complicated due to the structural complexity of <it>PKD1 </it>gene and the high diversity of the mutations. This study is the first systematic ADPKD mutation analysis of both <it>PKD1 </it>and <it>PKD2 </it>genes in Chinese patients using denaturing high-performance liquid chromatography (DHPLC).</p> <p>Methods</p> <p>Both <it>PKD1 </it>and <it>PKD2 </it>genes were mutation screened in each proband from 65 families using DHPLC followed by DNA sequencing. Novel variations found in the probands were checked in their family members available and 100 unrelated normal controls. Then the pathogenic potential of the variations of unknown significance was examined by evolutionary comparison, effects of amino acid substitutions on protein structure, and effects of splice site alterations using online mutation prediction resources.</p> <p>Results</p> <p>A total of 92 variations were identified, including 27 reported previously. Definitely pathogenic mutations (ten frameshift, ten nonsense, two splicing defects and one duplication) were identified in 28 families, and probably pathogenic mutations were found in an additional six families, giving a total detection level of 52.3% (34/65). About 69% (20/29) of the mutations are first reported with a recurrent mutation rate of 31%.</p> <p>Conclusions</p> <p>Mutation study of <it>PKD1 </it>and <it>PKD2 </it>genes in Chinese Hans with ADPKD may contribute to a better understanding of the genetic diversity between different ethnic groups and enrich the mutation database. Besides, evaluating the pathogenic potential of novel variations should also facilitate the clinical diagnosis and genetic counseling of the disease.</p

    Molecular Analysis of the APC and MYH Genes in Czech Families Affected by FAP or Multiple Adenomas: 13 Novel Mutations

    Get PDF
    We give a nearly optimal sublinear-time algorithm for approximating the size of a minimum vertex cover in a graph G. The algorithm may query the degree deg(v) of any vertex v of its choice, and for each 1 <= i <= deg(v), it may ask for the i-th neighbor of v. Letting VC_opt(G) denote the minimum size of vertex cover in G, the algorithm outputs, with high constant success probability, an estimate VC_estimate(G) such that VC_opt(G) <= VC_estimate(G) <= 2 * VC_opt(G) + epsilon*n, where epsilon is a given additive approximation parameter. We refer to such an estimate as a (2,epsilon)-estimate. The query complexity and running time of the algorithm are ~O(avg_deg * poly(1/epsilon)), where avg_deg denotes the average vertex degree in the graph. The best previously known sublinear algorithm, of Yoshida et al. (STOC 2009), has query complexity and running time O(d^4/epsilon^2), where d is the maximum degree in the graph. Given the lower bound of Omega(avg_deg) (for constant epsilon) for obtaining such an estimate (with any constant multiplicative factor) due to Parnas and Ron (TCS 2007), our result is nearly optimal. In the case that the graph is dense, that is, the number of edges is Theta(n^2), we consider another model, in which the algorithm may ask, for any pair of vertices u and v, whether there is an edge between u and v. We show how to adapt the algorithm that uses neighbor queries to this model and obtain an algorithm that outputs a (2,epsilon)-estimate of the size of a minimum vertex cover whose query complexity and running time are ~O(n) * poly(1/epsilon)

    A review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived from biorefinery water fractions

    Get PDF
    Aqueous-phase reforming (APR) of oxygenated hydrocarbons is a process for the production of hydrogen and light alkanes. The reactants of APR remain in liquid phase during the reaction avoiding an energetically demanding vaporization-step compared to processes such as steam reforming (SR). Furthermore, low reaction temperatures thermodynamically favour the formation of hydrogen with low carbon monoxide content. Therefore, APR has been recently considered as a promising route to upgrade organic compounds found in biorefinery water fractions. Aqueous oxygenated hydrocarbons are reformed at low temperatures (200–250 °C) and high pressures (15–50 bar), typically with platinum- and nickel-based catalyst. In addition, metal combinations of these and other metals have been applied to enhance the catalyst performance. Alumina has been extensively used as catalyst support in APR. Nonetheless, other oxides and carbonaceous materials have been applied to improve the stability of catalysts. Hydrothermal conditions and high pressure present operational challenges that hinder the development of aqueous-phase reforming. However, low yields of desired products and fast catalyst deactivation constitute the main barriers. To maximize the APR effectiveness, the optimization of operation conditions and more active and durable catalysts are required
    corecore