241 research outputs found

    Intraoperative radiotherapy for breast cancer: powerful evidence to change practice

    Get PDF
    We believe that the recent News and Views article (Sasieni, P. D. & Sawyer, E. J. Intraoperative radiotherapy for early breast cancer β€” insufficient evidence to change practice. Nat. Rev. Clin. Oncol. 17, 723–724 (2020))1 about the TARGIT-A trial contains several factual and logical errors. This article overlooks both the long-term positive findings2 and the all-important patient perspective

    Y2Y4 Receptor Double Knockout Protects Against Obesity Due to a High-Fat Diet or Y1 Receptor Deficiency in Mice

    Get PDF
    Neuropeptide Y receptors are critical regulators of energy homeostasis, but the functional interactions and relative contributions of Y receptors and the environment in this process are unknown. We measured the effects of an ad libitum diet of normal or high-fat food on energy balance in mice with single, double, or triple deficiencies of Y1, Y2, or Y4 receptors. Whereas wild-type mice developed diet-induced obesity, Y2Y4 double knockouts did not. In contrast, Y1 knockout or Y1Y2 or Y1Y4 receptor double knockout mice developed an exacerbated diet-induced obesity syndrome. Remarkably, the antiobesity effect of Y2Y4 deficiency was stronger than the obesogenic effect of Y1 deficiency, since Y1Y2Y4 triple knockouts did not develop obesity on the high-fat diet. Resistance to diet-induced obesity in Y2Y4 knockouts was associated with reduced food intake and improved glucose tolerance in the absence of changes in total physical activity. Fecal concentration of free fatty acids was significantly increased in Y2Y4 knockouts in association with a significantly reduced bile acid pool and marked alterations in intestinal morphology. In addition, hypothalamic proopiomelanocortin expression was decreased in diet-induced obesity (in both wild-type and Y1 receptor knockout mice) but not in obesity-resistant Y2Y4 receptor knockout mice fed a high-fat diet. Therefore, deletion of Y2 and Y4 receptors synergistically protects against diet-induced obesity, at least partially via changes in food intake and hypothalamic proopiomelanocortin expression

    Risk-adapted targeted intraoperative radiotherapy versus whole-breast radiotherapy for breast cancer: 5-year results for local control and overall survival from the TARGIT-A randomised trial

    Get PDF
    BACKGROUND: The TARGIT-A trial compared risk-adapted radiotherapy using single-dose targeted intraoperative radiotherapy (TARGIT) versus fractionated external beam radiotherapy (EBRT) for breast cancer. We report 5-year results for local recurrence and the first analysis of overall survival. METHODS: TARGIT-A was a randomised, non-inferiority trial. Women aged 45 years and older with invasive ductal carcinoma were enrolled and randomly assigned in a 1:1 ratio to receive TARGIT or whole-breast EBRT, with blocks stratified by centre and by timing of delivery of targeted intraoperative radiotherapy: randomisation occurred either before lumpectomy (prepathology stratum, TARGIT concurrent with lumpectomy) or after lumpectomy (postpathology stratum, TARGIT given subsequently by reopening the wound). Patients in the TARGIT group received supplemental EBRT (excluding a boost) if unforeseen adverse features were detected on final pathology, thus radiotherapy was risk-adapted. The primary outcome was absolute difference in local recurrence in the conserved breast, with a prespecified non-inferiority margin of 2Β·5% at 5 years; prespecified analyses included outcomes as per timing of randomisation in relation to lumpectomy. Secondary outcomes included complications and mortality. This study is registered with ClinicalTrials.gov, number NCT00983684. FINDINGS: Patients were enrolled at 33 centres in 11 countries, between March 24, 2000, and June 25, 2012. 1721 patients were randomised to TARGIT and 1730 to EBRT. Supplemental EBRT after TARGIT was necessary in 15Β·2% [239 of 1571] of patients who received TARGIT (21Β·6% prepathology, 3Β·6% postpathology). 3451 patients had a median follow-up of 2 years and 5 months (IQR 12–52 months), 2020 of 4 years, and 1222 of 5 years. The 5-year risk for local recurrence in the conserved breast was 3Β·3% (95% CI 2Β·1–5Β·1) for TARGIT versus 1Β·3% (0Β·7–2Β·5) for EBRT (p=0Β·042). TARGIT concurrently with lumpectomy (prepathology, n=2298) had much the same results as EBRT: 2Β·1% (1Β·1–4Β·2) versus 1Β·1% (0Β·5–2Β·5; p=0Β·31). With delayed TARGIT (postpathology, n=1153) the between-group difference was larger than 2Β·5% (TARGIT 5Β·4% [3Β·0–9Β·7] vs EBRT 1Β·7% [0Β·6–4Β·9]; p=0Β·069). Overall, breast cancer mortality was much the same between groups (2Β·6% [1Β·5–4Β·3] for TARGIT vs 1Β·9% [1Β·1–3Β·2] for EBRT; p=0Β·56) but there were significantly fewer non-breast-cancer deaths with TARGIT (1Β·4% [0Β·8–2Β·5] vs 3Β·5% [2Β·3–5Β·2]; p=0Β·0086), attributable to fewer deaths from cardiovascular causes and other cancers. Overall mortality was 3Β·9% (2Β·7–5Β·8) for TARGIT versus 5Β·3% (3Β·9–7Β·3) for EBRT (p=0Β·099). Wound-related complications were much the same between groups but grade 3 or 4 skin complications were significantly reduced with TARGIT (four of 1720 vs 13 of 1731, p=0Β·029). INTERPRETATION: TARGIT concurrent with lumpectomy within a risk-adapted approach should be considered as an option for eligible patients with breast cancer carefully selected as per the TARGIT-A trial protocol, as an alternative to postoperative EBRT. FUNDING: University College London Hospitals (UCLH)/UCL Comprehensive Biomedical Research Centre, UCLH Charities, National Institute for Health Research Health Technology Assessment programme, Ninewells Cancer Campaign, National Health and Medical Research Council, and German Federal Ministry of Education and Research

    Accelerated Partial Breast Irradiation in Clinical Practice

    Get PDF
    Accelerated partial breast irradiation (APBI) has been under clinical investigation for more than 15 years. There are several technical approaches that are clinically established, e.g. brachytherapy, intraoperative radiotherapy (IORT), or external-beam radiotherapy. The understanding of the underlying biology, optimal technical procedures, patient selection criteria, and imaging changes during follow-up has increased enormously. After completion of several phase III trials using brachytherapy or IORT, APBI is currently increasingly used either in phase IV studies, registries, or in selected patients outside of clinical studies. Consensus statements about suitable patients are available from several international and national societies like ASTRO, ESTRO, and DEGRO. One may expect that 15-25% of patients undergoing breast-conserving surgery may qualify for APBI, i.e. patients with small invasive ductal breast cancer without clinical lymph node involvement

    Combined kyphoplasty and intraoperative radiotherapy (Kypho-IORT) versus external beam radiotherapy (EBRT) for painful vertebral metastases - a randomized phase III study

    Get PDF
    Background: The spine is the most frequent location of bone metastases. Local treatment aims at palliation of pain and, given the increased likelihood of long-term cancer survival, at local control. Kyphoplasty and intraoperative radiotherapy (Kypho-IORT) provided instantaneous pain relief in 70% of patients at the first day after the intervention and resulted in local control rates of > 93% at 1 year in a recently conducted phase I/II trial. To assess its clinical value, we designed a phase III trial which tests Kypho-IORT against the most widespread standard-of-care, external beam radiotherapy (EBRT), in patients with painful vertebral metastases. Methods: This phase III study includes patients β‰₯50 years of age with up to 4 vertebral metastases and a pain score of at least 3/10 points on the visual/numeric analogy scale (VAS). Patients randomized into the experimental arm (A) will undergo Kypho-IORT (Kyphoplasty plus IORT with 8 Gy prescribed to 13 mm depth). Patients randomized into the control arm (B) will receive EBRT with either 30 Gy in 10 fractions or 8 Gy as a single dose. The primary end point is pain reduction defined as at least βˆ’β€‰3 points on the VAS compared to baseline at day 1. Assuming that 40% of patients in the Kypho-IORT arm and 5% of patients in the control arm will achieve this reduction and 20% will drop out, a total of 54 patients will have to be included to reach a power of 0.817 with a two-sided alpha of 0.05. Secondary endpoints are evaluation of the percentage of patients with a pain reduction of at least 3 points at 2 and 6 weeks, local tumor control, frequency of re-intervention, secondary fractures/sintering, complication rates, skin toxicity/wound healing, progression-free survival (PFS), overall survival (OS) and quality of life. Discussion: This trial will generate level 1 evidence on the clinical value of a one-stop procedure which may provide instantaneous pain relief, long-term control and shortened intervals to further adjuvant (systemic) therapies in patients with spinal metastases. Trial registration Registered with ClinicalTrials.gov, number: NCT02773966. Registration date: 05/16/2016

    Differential Susceptibility of Interneurons Expressing Neuropeptide Y or Parvalbumin in the Aged Hippocampus to Acute Seizure Activity

    Get PDF
    Acute seizure (AS) activity in old age has an increased predisposition for evolving into temporal lobe epilepsy (TLE). Furthermore, spontaneous seizures and cognitive dysfunction after AS activity are often intense in the aged population than in young adults. This could be due to an increased vulnerability of inhibitory interneurons in the aged hippocampus to AS activity. We investigated this issue by comparing the survival of hippocampal GABA-ergic interneurons that contain the neuropeptide Y (NPY) or the calcium binding protein parvalbumin (PV) between young adult (5-months old) and aged (22-months old) F344 rats at 12 days after three-hours of AS activity. Graded intraperitoneal injections of the kainic acid (KA) induced AS activity and a diazepam injection at 3 hours after the onset terminated AS-activity. Measurement of interneuron numbers in different hippocampal subfields revealed that NPY+ interneurons were relatively resistant to AS activity in the aged hippocampus in comparison to the young adult hippocampus. Whereas, PV+ interneurons were highly susceptible to AS activity in both age groups. However, as aging alone substantially depleted these populations, the aged hippocampus after three-hours of AS activity exhibited 48% reductions in NPY+ interneurons and 70% reductions in PV+ interneurons, in comparison to the young hippocampus after similar AS activity. Thus, AS activity-induced TLE in old age is associated with far fewer hippocampal NPY+ and PV+ interneuron numbers than AS-induced TLE in the young adult age. This discrepancy likely underlies the severe spontaneous seizures and cognitive dysfunction observed in the aged people after AS activity

    Distribution of Alarin Immunoreactivity in the Mouse Brain

    Get PDF
    Alarin is a 25 amino acid peptide that belongs to the galanin peptide family. It is derived from the galanin-like peptide gene by a splice variant, which excludes exon 3. Alarin was first identified in gangliocytes of neuroblastic tumors and later shown to have a vasoactive function in the skin. Recently, alarin was demonstrated to stimulate food intake as well as the hypothalamic–pituitary–gonadal axis in rodents, suggesting that it might be a neuromodulatory peptide in the brain. However, the individual neurons in the central nervous system that express alarin have not been identified. Here, we determined the distribution of alarin-like immunoreactivity (alarin-LI) in the adult murine brain. The specificity of the antibody against alarin was demonstrated by the absence of labeling after pre-absorption of the antiserum with synthetic alarin peptide and in transgenic mouse brains lacking neurons expressing the GALP gene. Alarin-LI was observed in different areas of the murine brain. A high intensity of alarin-LI was detected in the accessory olfactory bulb, the medial preoptic area, the amygdala, different nuclei of the hypothalamus such as the arcuate nucleus and the ventromedial hypothalamic nucleus, the trigeminal complex, the locus coeruleus, the ventral chochlear nucleus, the facial nucleus, and the epithelial layer of the plexus choroideus. The distinct expression pattern of alarin in the adult mouse brain suggests potential functions in reproduction and metabolism

    Galanin Receptor 1 Deletion Exacerbates Hippocampal Neuronal Loss after Systemic Kainate Administration in Mice

    Get PDF
    Galanin is a neuropeptide with a wide distribution in the central and peripheral nervous systems and whose physiological effects are mediated through three G protein-coupled receptor subtypes, GalR1, GalR2, and GalR3. Several lines of evidence indicate that galanin, as well as activation of the GalR1 receptor, is a potent and effective modulator of neuronal excitability in the hippocampus.In order to test more formally the potential influence of GalR1 on seizure-induced excitotoxic cell death, we conducted functional complementation tests in which transgenic mice that exhibit decreased expression of the GalR1 candidate mRNA underwent kainate-induced status epilepticus to determine if the quantitative trait of susceptibility to seizure-induced cell death is determined by the activity of GalR1. In the present study, we report that reduction of GalR1 mRNA via null mutation or injection of the GalR1 antagonist, galantide, prior to kainate-induced status epilepticus induces hippocampal damage in a mouse strain known to be highly resistant to kainate-induced neuronal injury. Wild-type and GalR1 knockout mice were subjected to systemic kainate administration. Seven days later, Nissl and NeuN immune- staining demonstrated that hippocampal cell death was significantly increased in GalR1 knockout strains and in animals injected with the GalR1 antagonist. Compared to GalR1-expressing mice, GalR1-deficient mice had significantly larger hippocampal lesions after status epilepticus.Our results suggest that a reduction of GalR1 expression in the C57BL/6J mouse strain renders them susceptible to excitotoxic injury following systemic kainate administration. From these results, GalR1 protein emerges as a new molecular target that may have a potential therapeutic value in modulating seizure-induced cell death
    • …
    corecore