4,946 research outputs found

    Angular momentum transport efficiency in post-main sequence low-mass stars

    Full text link
    Context. Using asteroseismic techniques, it has recently become possible to probe the internal rotation profile of low-mass (~1.1-1.5 Msun) subgiant and red giant stars. Under the assumption of local angular momentum conservation, the core contraction and envelope expansion occurring at the end of the main sequence would result in a much larger internal differential rotation than observed. This suggests that angular momentum redistribution must be taking place in the interior of these stars. Aims. We investigate the physical nature of the angular momentum redistribution mechanisms operating in stellar interiors by constraining the efficiency of post-main sequence rotational coupling. Methods. We model the rotational evolution of a 1.25 Msun star using the Yale Rotational stellar Evolution Code. Our models take into account the magnetic wind braking occurring at the surface of the star and the angular momentum transport in the interior, with an efficiency dependent on the degree of internal differential rotation. Results. We find that models including a dependence of the angular momentum transport efficiency on the radial rotational shear reproduce very well the observations. The best fit of the data is obtained with an angular momentum transport coefficient scaling with the ratio of the rotation rate of the radiative interior over that of the convective envelope of the star as a power law of exponent ~3. This scaling is consistent with the predictions of recent numerical simulations of the Azimuthal Magneto-Rotational Instability. Conclusions. We show that an angular momentum transport process whose efficiency varies during the stellar evolution through a dependence on the level of internal differential rotation is required to explain the observed post-main sequence rotational evolution of low-mass stars.Comment: 8 pages, 6 figures; accepted for publication in Astronomy & Astrophysic

    Power Density Spectra of Gamma-Ray Bursts in the Internal Shock Model

    Get PDF
    We simulate Gamma-Ray Bursts arising from internal shocks in relativistic winds, calculate their power density spectrum (PDS), and identify the factors to which the PDS is most sensitive: the wind ejection features, which determine the wind dynamics and its optical thickness, and the energy release parameters, which give the pulse 50-300 keV radiative efficiency. For certain combinations of ejection features and wind parameters the resulting PDS exhibits the features observed in real bursts. We found that the upper limit on the efficiency of conversion of wind kinetic energy into 50-300 keV photons is \sim 1%. Winds with a modulated Lorentz factor distribution of the ejecta yield PDSs in accord with current observations and have efficiencies closer to 10310^{-3}, while winds with a random, uniform Lorentz factor ejection must be optically thick to the short duration pulses to produce correct PDSs, and have an overall efficiency around 10410^{-4}.Comment: 6 pages, 4 figures, Latex, submitted to The Astrophysical Journal (05/04/99

    The angular momentum transport by unstable toroidal magnetic fields

    Full text link
    We demonstrate with a nonlinear MHD code that angular momentum can be transported due to the magnetic instability of toroidal fields under the influence of differential rotation, and that the resulting effective viscosity may be high enough to explain the almost rigid-body rotation observed in radiative stellar cores. Only stationary current-free fields and only those combinations of rotation rates and magnetic field amplitudes which provide maximal numerical values of the viscosity are considered. We find that the dimensionless ratio of the effective over molecular viscosity, νT/ν\nu_T/\nu;, linearly grows with the Reynolds number of the rotating fluid multiplied with the square-root of the magnetic Prandtl number - which is of order unity for the considered red sub-giant KIC 7341231. For the considered interval of magnetic Reynolds numbers - which is restricted by numerical constraints of the nonlinear MHD code - there is a remarkable influence of the magnetic Prandtl number on the relative importance of the contributions of the Reynolds stress and the Maxwell stress to the total viscosity, which is magnetically dominated only for Pm \gtrsim 0.5. We also find that the magnetized plasma behaves as a non-Newtonian fluid, i.e. the resulting effective viscosity depends on the shear in the rotation law. The decay time of the differential rotation thus depends on its shear and becomes longer and longer during the spin-down of a stellar core.Comment: Revised version. 7 pages, 9 figures; accepted for publication in A&

    The metacognitions about smoking questionnaire : development and psychometric properties

    Get PDF
    The Metacognitions about Smoking Questionnaire was shown to possess good psychometric properties, as well as predictive and divergent validity within the populations that were tested. The metacognition factors explained incremental variance in smoking behaviour above smoking outcome expectancies

    Lithium abundance and 6Li/7Li ratio in the active giant HD123351 I. A comparative analysis of 3D and 1D NLTE line-profile fits

    Full text link
    Current three-dimensional (3D) hydrodynamical model atmospheres together with NLTE spectrum synthesis, permit to derive reliable atomic and isotopic chemical abundances from high-resolution stellar spectra. Not much is known about the presence of the fragile 6Li isotope in evolved solar-metallicity RGB stars, not to mention its production in magnetically active targets like HD123351. From fits of the observed CFHT spectrum with synthetic line profiles based on 1D and 3D model atmospheres, we seek to estimate the abundance of the 6Li isotope and to place constraints on its origin. We derive A(Li) and the 6Li/7Li isotopic ratio by fitting different synthetic spectra to the Li-line region of a high-resolution CFHT spectrum (R=120 000, S/R=400). The synthetic spectra are computed with four different line lists, using in parallel 3D hydrodynamical CO5BOLD and 1D LHD model atmospheres and treating the line formation of the lithium components in non-LTE (NLTE). We find A(Li)=1.69+/-0.11 dex and 6Li/7Li=8.0+/-4.4 % in 3D-NLTE, using the line list of Mel\'endez et al. (2012), updated with new atomic data for V I, which results in the best fit of the lithium line profile of HD123351. Two other line lists lead to similar results but with inferior fit qualities. Our 2-sigma detection of the 6Li isotope is the result of a careful statistical analysis and the visual inspection of each achieved fit. Since the presence of a significant amount of 6Li in the atmosphere of a cool evolved star is not expected in the framework of standard stellar evolution theory, non-standard, external lithium production mechanisms, possibly related to stellar activity or a recent accretion of rocky material, need to be invoked to explain the detection of 6Li in HD123351.Comment: 16 pages, 11 figures. Accepted for publication in A&

    Efficiency and spectrum of internal gamma-ray burst shocks

    Full text link
    We present an analysis of the Internal Shock Model of GRBs, where gamma-rays are produced by internal shocks within a relativistic wind. We show that observed GRB characteristics impose stringent constraints on wind and source parameters. We find that a significant fraction, of order 20 %, of the wind kinetic energy can be converted to radiation, provided the distribution of Lorentz factors within the wind has a large variance and provided the minimum Lorentz factor is higher than 10^(2.5)L_(52)^(2/9), where L=10^(52)L_(52)erg/s is the wind luminosity. For a high, >10 %, efficiency wind, spectral energy breaks in the 0.1 to 1 MeV range are obtained for sources with dynamical time R/c < 1 ms, suggesting a possible explanation for the observed clustering of spectral break energies in this range. The lower limit to wind Lorenz factor and the upper limit, around (R/10^7 cm)^(-5/6) MeV to observed break energies are set by Thomson optical depth due to electron positron pairs produced by synchrotron photons. Natural consequences of the model are absence of bursts with peak emission energy significantly exceeding 1 MeV, and existence of low luminosity bursts with low, 1 keV to 10 keV, break energies.Comment: 10 pages, 5 ps-figures. Expanded discussion of magnetic field and electron energy fraction. Accepted for publication in Astrophysical Journa
    corecore