174 research outputs found

    Nonisothermal crystallization kinetics and microstructure evolution of calcium lanthanum metaborate glass

    Get PDF
    This paper reports results on the crystallization kinetics of 35.5CaO-7.25La(2)O(3)-57.25B(2)O(3) glass under nonisothermal conditions based on the studies carried out from the differential thermal analysis upon using various well-established models. The crystalline phases formed during the optimized ceramization process have been confirmed from the X-ray diffraction. The activation energies of the first (formation of CaLaB(7)O(13)) and second (formation of LaBO(3)) crystallization events have been estimated using the conventional methods of Kissinger, Augis-Bennett, Ozawa, and Matusita, and the results are found to be in good agreement with each other. The Avrami exponents that are determined by these models for the crystallization of CaLaB(7)O(13) and LaBO(3) are found to be in the range of (1.81-2.35) and (4.03-4.65), respectively. This indicates that the formation of CaLaB(7)O(13) is dominated by a surface crystallization, whereas LaBO(3) is formed by three-dimensional bulk crystallization with an increased rate of nucleation. This observation is further validated by microstructural investigation, which shows the formation of CaLaB(7)O(13) phase as a surface layer and a bulk crystallization of LaBO(3) in optimally ceramized samples

    The diagnostic significance of hyperfibrinogenemia and thrombocytosis in patients with ovarian tumors/adnexal masses

    Get PDF
    Background: We aim to study the correlation of thrombocytosis and hyperfibrinogenemia with ovarian tumors and its role in the diagnosis of ovarian malignancy. And to evaluate the platelet and fibrinogen levels in early and advanced stage ovarian disease. Methods: This is a single centre prospective study. We evaluated plasma fibrinogen levels and plasma platelet levels in 250 patients in women presenting in our OPD with adnexal masses/ovarian tumors. Thrombocytosis was defined as a platelet count greater than >410,000/uL. Hyperfibrinogenemia was defined as a fibrinogen level higher than 360 mg/dL. The association between plasma fibrinogen, platelet levels and clinico-pathological, histopathological parameters were investigated in regards to: 1. Malignant or benign ovarian tumor. 2. Early or advanced disease in malignant ovarian tumors. A multivariate logistic regression model was performed to identify an independent association. Results: Thrombocytosis and hyperfibrinogenemia are seen to be associated with malignant ovarian tumors. In a multivariate model, plasma fibrinogen and plasma platelet levels were identified to be independently associated with the malignant ovarian tumours. Within the EOC cohort, patients with advanced stage disease had higher plasma fibrinogen levels than patients with early stage. Conclusions: In this study, we demonstrated that both thrombocytosis and hyperfibrinogenemia were positively associated with malignant ovarian tumors. They were also associated with advanced disease stage, elevated CA125 level and other markers. These finding are in accordance with the previous published data from patients with ovarian cancer, indicating that the platelet and fibrinogen levels increase in parallel with tumor progression and metastasis. Thus confirming the role of elevated platelet and fibrinogen levels in diagnosis and prognosis of ovarian Malignancy

    Clozapine induced pneumonitis: a case report

    Get PDF
    Clozapine is an atypical antipsychotic used for the treatment of schizophrenia. Clozapine acts by blocking serotonin receptors in the brain, thereby reducing the symptoms of schizophrenia. Clozapine is usually restricted to the treatment of resistant cases of schizophrenia. Clozapine induced pneumonitis is a very rare adverse reaction and, one such incident in a 16-year-old Indian boy is intricated in this case report

    Polymethyl Methacrylate as a Binder for Pyrotechnic Compositions

    Get PDF
    Studies on polymethyl methacrylate (PMMA) as a binder for igniter and delay compositions are reported. Igniter compositions based on magnesium and boron as fuels and potassium nitrate as oxidiser, delay compositions comprising ferrosilicon and red lead, have been investigated. These compositions were subjected to various tests, such as linear burning rate, sensitivity, calorimetric value, compatibility, pelleting properties, spark sensitivity, ignition temperatures and performance characteristics. The results indicate that the igniter compositions Mg:KNO/sub 3/:PMMA (42:50:8) and B:KNO/sub 3/:PMMA (30:70:10) as well as the delay composition comprising FeSi:Pb/sub 3/O/sub 4:PMMA (25:75:1) have improved properties and therefore could find practical applications

    Gas-Phase Synthesis for Label-Free Biosensors: Zinc-Oxide Nanowires Functionalized with Gold Nanoparticles

    Get PDF
    Metal oxide semiconductor nanowires have important applications in label-free biosensing due to their ease of fabrication and ultralow detection limits. Typically, chemical functionalization of the oxide surface is necessary for specific biological analyte detection. We instead demonstrate the use of gas-phase synthesis of gold nanoparticles (Au NPs) to decorate zinc oxide nanowire (ZnO NW) devices for biosensing applications. Uniform ZnO NW devices were fabricated using a vapor-solid-liquid method in a chemical vapor deposition (CVD) furnace. Magnetron-sputtering of a Au target combined with a quadrupole mass filter for cluster size selection was used to deposit Au NPs on the ZnO NWs. Without additional functionalization, we electrically detect DNA binding on the nanowire at sub-nanomolar concentrations and visualize individual DNA strands using atomic force microscopy (AFM). By attaching a DNA aptamer for streptavidin to the biosensor, we detect both streptavidin and the complementary DNA strand at sub-nanomolar concentrations. Au NP decoration also enables sub-nanomolar DNA detection in passivated ZnO NWs that are resilient to dissolution in aqueous solutions. This novel method of biosensor functionalization can be applied to many semiconductor materials for highly sensitive and label-free detection of a wide range of biomolecules

    Modeling BCR-ABL and MLL-AF9 leukemia in a human bone marrow-like scaffold based xenograft model

    Get PDF
    While NOD-SCID IL2Rγ(-/-) (NSG) xenograft mice are currently the most frequently used model to study human leukemia in vivo, the absence of a human niche severely hampers faithful recapitulation of the disease. We used NSG mice in which ceramic scaffolds seeded with human mesenchymal stromal cells were implanted to generate a human bone marrow (huBM-sc)-like niche. We observed that, in contrast to the murine bone marrow (mBM) niche, expression of BCR-ABL or MLL-AF9 was sufficient to induce both primary AML and ALL. Stemness was preserved within the human niches as demonstrated by serial transplantation assays. Efficient engraftment of AML MLL-AF9 and blast-crisis CML patient cells was also observed, whereby the immature blast-like phenotype was maintained in the huBM-sc niche, but to a much lesser extent in mBM niches. We compared transcriptomes of leukemias derived from mBM niches versus leukemias from huBM-like scaffold-based niches, which revealed striking differences in expression of genes associated with hypoxia, mitochondria and metabolism. Finally, we utilized the huBM-sc MLL-AF9 B-ALL model to evaluate the efficacy of the I-BET151 inhibitor in vivo. In conclusion, we have established human niche models in which the myeloid and lymphoid features of BCR-ABL(+) and MLL-AF9(+) leukemias can be studied in detail. Accepted article preview online 29 April 2016; Advance online publication 17 May 2016This work was supported by grants from the Dutch Cancer Society (2009-4411; VU2011-5127) and by the EU (ITN EuroCSC). I-BET151 was kindly provided by Nicholas Smithers (GSK R&D, UK)

    Western Indian Ocean marine and terrestrial records of climate variability: a review and new concepts on land-ocean interactions since AD 1660

    Get PDF
    We examine the relationship between three tropical and two subtropical western Indian Ocean coral oxygen isotope time series to surface air temperatures (SAT) and rainfall over India, tropical East Africa and southeast Africa. We review established relationships, provide new concepts with regard to distinct rainfall seasons, and mean annual temperatures. Tropical corals are coherent with SAT over western India and East Africa at interannual and multidecadal periodicities. The subtropical corals correlate with Southeast African SAT at periodicities of 16–30 years. The relationship between the coral records and land rainfall is more complex. Running correlations suggest varying strength of interannual teleconnections between the tropical coral oxygen isotope records and rainfall over equatorial East Africa. The relationship with rainfall over India changed in the 1970s. The subtropical oxygen isotope records are coherent with South African rainfall at interdecadal periodicities. Paleoclimatological reconstructions of land rainfall and SAT reveal that the inferred relationships generally hold during the last 350 years. Thus, the Indian Ocean corals prove invaluable for investigating land–ocean interactions during past centuries

    Development of High Yielding Fusarium Wilt Resistant Cultivar by Pyramiding of “Genes” Through Marker-Assisted Backcrossing in Chickpea (Cicer arietinum L.)

    Get PDF
    Pusa 391, a mega desi chickpea variety with medium maturity duration is extensively cultivated in the Central Zone of India. Of late, this variety has become susceptible to Fusarium wilt (FW), which has drastic impact on its yield. Presence of variability in the wilt causing pathogen, Fusarium oxysporum f.sp. ciceri (foc) across geographical locations necessitates the role of pyramiding for FW resistance for different races (foc 1,2,3,4 and 5). Subsequently, the introgression lines developed in Pusa 391 genetic background were subjected to foreground selection using three SSR markers (GA16, TA 27 and TA 96) while 48 SSR markers uniformly distributed on all chromosomes, were used for background selection to observe the recovery of recurrent parent genome (RPG). BC1F1 lines with 75–85% RPG recovery were used to generate BC2F1. The plants that showed more than 90% RPG recovery in BC2F1 were used for generating BC3F1. The plants that showed more than 96% RPG recovery were selected and selfed to generate BC3F3. Multi-location evaluation of advanced introgression lines (BC2F3) in six locations for grain yield (kg/ha), days to fifty percent flowering, days to maturity, 100 seed weight and disease incidence was done. In case of disease incidence, the genotype IL1 (BGM 20211) was highly resistant to FW in Junagarh, Indore, New Delhi, Badnapur and moderately resistant at Sehore and Nandyal. GGE biplot analysis revealed that IL1(BGM20211) was the most stable genotype at Junagadh, Sehore and Nandyal. GGE biplot analysis revealed that IL1(BGM 20211) and IL4(BGM 20212) were the top performers in yield and highly stable across six environments and were nominated for Advanced Varietal Trials (AVT) of AICRP (All India Coordinated Research Project on Chickpea) in 2018–19. BGM20211 and BGM 20212 recorded 29 and 28.5% average yield gain over the recurrent parent Pusa 391, in the AVT-1 and AVT-2 over five environments. Thus, BGM20211 was identified for release and notified as Pusa Manav/Pusa Chickpea 20211 for Madhya Pradesh, Gujarat and Maharashtra, Southern Rajasthan, Bundhelkhand region of Uttar Pradesh states by the Central Sub-Committees on Crop Standards, Notification and Release of Varieties of Agricultural Crops, Ministry of Agriculture and Farmers Welfare, Government of India, for commercial cultivation in India (Gazette notification number S.O.500 (E) dt. 29-1-2021).Such pyramided lines give resilience to multiple races of fusarium wilt with added yield advantage

    2,000-year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 460 (2009): 1113-1116, doi:10.1038/nature08233.Northern Hemisphere surface temperature reconstructions suggest that the late twentieth century was warmer than any other time during the past 500 years and possibly any time during the past 1,300 years. These temperature reconstructions are based largely on terrestrial records from extra-tropical or highelevation sites; however, global average surface temperature changes closely follow those of the global tropics, which are 75% ocean. In particular, the tropical Indo- Pacific warm pool (IPWP) represents a major heat reservoir that both influences global atmospheric circulation and responds to remote northern latitude forcings. Here we present a decadally resolved continuous sea surface temperature (SST) reconstruction from the IPWP that spans the past two millennia and overlaps the instrumental record, enabling both a direct comparison of proxy data to the instrumental record and an evaluation of past changes in the context of twentieth century trends. Our record from the Makassar Strait, Indonesia, exhibits trends that are similar to a recent Northern Hemisphere temperature reconstruction. Reconstructed SST was, however, within error of modern values during the Medieval Warm Period from about AD 1000 to AD 1250, towards the end of the Medieval Warm Period. SSTs during the Little Ice Age (approximately ad 1550–1850) were variable, and 0.5 to 1°C colder than modern values during the coldest intervals. A companion reconstruction of δ18O of sea water—a sea surface salinity and hydrology indicator— indicates a tight coupling with the East Asian monsoon system and remote control of IPWP hydrology on centennial–millennial timescales, rather than a dominant influence from local SST variation.This work was financially supported by the US NSF and the Ocean Climate Change Institute of WHOI

    An Efficient Strategy for Broad-Range Detection of Low Abundance Bacteria without DNA Decontamination of PCR Reagents

    Get PDF
    BACKGROUND: Bacterial DNA contamination in PCR reagents has been a long standing problem that hampers the adoption of broad-range PCR in clinical and applied microbiology, particularly in detection of low abundance bacteria. Although several DNA decontamination protocols have been reported, they all suffer from compromised PCR efficiency or detection limits. To date, no satisfactory solution has been found. METHODOLOGY/PRINCIPAL FINDINGS: We herein describe a method that solves this long standing problem by employing a broad-range primer extension-PCR (PE-PCR) strategy that obviates the need for DNA decontamination. In this method, we first devise a fusion probe having a 3'-end complementary to the template bacterial sequence and a 5'-end non-bacterial tag sequence. We then hybridize the probes to template DNA, carry out primer extension and remove the excess probes using an optimized enzyme mix of Klenow DNA polymerase and exonuclease I. This strategy allows the templates to be distinguished from the PCR reagent contaminants and selectively amplified by PCR. To prove the concept, we spiked the PCR reagents with Staphylococcus aureus genomic DNA and applied PE-PCR to amplify template bacterial DNA. The spiking DNA neither interfered with template DNA amplification nor caused false positive of the reaction. Broad-range PE-PCR amplification of the 16S rRNA gene was also validated and minute quantities of template DNA (10-100 fg) were detectable without false positives. When adapting to real-time and high-resolution melting (HRM) analytical platforms, the unique melting profiles for the PE-PCR product can be used as the molecular fingerprints to further identify individual bacterial species. CONCLUSIONS/SIGNIFICANCE: Broad-range PE-PCR is simple, efficient, and completely obviates the need to decontaminate PCR reagents. When coupling with real-time and HRM analyses, it offers a new avenue for bacterial species identification with a limited source of bacterial DNA, making it suitable for use in clinical and applied microbiology laboratories
    corecore