1,165 research outputs found

    The protein import machinery of chloroplasts

    Get PDF

    The chloroplast import receptor Toc34 functions as preprotein-regulated GTPase

    Get PDF
    Toc34 is a protein of the chloroplast outer envelope membrane that acts as receptor for preproteins containing a transit sequence. The recognition of preproteins by Toc34 is regulated by GTP binding and phosphorylation. The phosphorylation site of Toc34 is located at serine 113, close to the postulated triphosphate binding site. This can explain the down-regulation of Toc34 by phosphorylation, resulting in the loss of GTP binding. Vice versa, GTP but not GDP binding of Toc34 influences the phosphorylation. The nucleotide specificity of Toc34 is not only determined by the classical nucleotide binding domains but by a non-typical region at the N-terminus of the protein. As a result, the GTP binding properties are unusual, since the triphosphate moiety of GTP is bound with higher affinity than the purine base. Purified Toc34 hydrolyses GTP at a low rate, which could regulate the receptor function. The rate of hydrolysis is greatly stimulated by a precursor protein

    Protein import machineries in endosymbiotic organelles

    Get PDF
    Abstract.: Chloroplast and mitochondria, the two organelles with an accepted endosymbiotic origin, have developed multiple translocation pathways to ensure the subcellular allocation of proteins synthesized by cytosolic ribosomes, and to guarantee their assembly into functional complexes in coordination also with organellar-encoded subunits. The evolution of different protein import machineries was thus essential for the development of these two organelles within cells. A general overview of the translocation machineries in chloroplast and mitochondrial membranes involved in targeting and import of nuclearencoded proteins, with special focus on plant cells where the two organelles coexist, is expounde

    Arabidopsis alternative oxidase sustains Escherichia coli respiration.

    Full text link

    Adenylate effects on protein phosphorylation in the interenvelope lumen of pea chloroplasts

    Get PDF
    A 64-kilodalton (kDa) protein, situated in the lumen between the inner and outer envelopes of pea (Pisum sativum L.) chloroplasts (Soll and Bennett 1988, Eur. J. Biochem., 175, 301–307) is shown to undergo reversible phosphorylation in isolated mixed envelope vesicles. It is the most conspicuously labelled protein after incubation of envelopes with 33 nmol·1-1 [-32P]ATP whereas incubation with 50 mol·1-1 [-32P]ATP labels most prominently two outer envelope proteins (86 and 23 kDa). Half-maximum velocity for phosphorylation of the 64-kDa protein occurs with 200 nmol·1-1 ATP, and around 40 mol·1-1 ATP for phosphorylation of the 86- and 23-kDa proteins, indicating the operation of two distinct kinases. GGuanosine-, uridine-, cytidine 5-triphosphate and AMP are poor inhibitors of the labelling of the 64-kDa protein with [-32P]ATP. On the other hand, ADP has a potent influence on the extent of labelling (half-maximal inhibition at 1–5 mol·1-1). The ADP-dependent appearance of 32P in ATP indicates that ADP acts by reversal of kinase activity and not as a competitive inhibitor. However, the most rapid loss of 32P from pre-labelled 64-kDa protein occurs when envelope vesicles are incubated with ATP t1/2=15 s at 20 molsd1-1 ATP). This induced turnover of phosphate appears to be responsible for the rapid phosphoryl turnover seen in situ

    Protocol to analyze and quantify protein-methylated RNA interactions in mammalian cells with a combination of RNA immunoprecipitation and nucleoside mass spectrometry

    Get PDF
    Cellular RNAs are modified by both physiological factors and exogenous agents, such as methyl methanesulfonate (MMS). However, techniques for analyzing how proteins may interact with these modified RNAs are limited. Here, we provide a protocol combining RNA immunoprecipitation (RIP) with mass spectrometry (MS) to analyze the methylation state of the RNAs bound by Flag-tagged proteins in mammalian cells. The approach is highly quantitative and can simultaneously detect several methylated nucleosides in a single experiment. For complete details on the use and execution of this protocol, please refer to Tsao et al. (2021)

    Role of serotonin in the hepato-gastroIntestinal tract: an old molecule for new perspectives

    Get PDF
    Abstract.: Beside its role as a neurotransmitter in the central nervous system, serotonin appears to be a central physiologic mediator of many gastrointestinal (GI) functions and a mediator of the brain-gut connection. By acting directly and via modulation of the enteric nervous system, serotonin has numerous effects on the GI tract. The main gut disturbances in which serotonin is involved are acute chemotherapy-induced nausea and vomiting, carcinoid syndrome and irritable bowel syndrome. Serotonin also has mitogenic properties. Platelet-derived serotonin is involved in liver regeneration after partial hepatectomy. In diseased liver, serotonin may play a crucial role in the progression of hepatic fibrosis and the pathogenesis of steatohepatitis. Better understanding of the role of the serotonin receptor subtypes and serotonin mechanisms of action in the liver and gut may open new therapeutic strategies in hepato-gastrointestinal disease
    • …
    corecore