103 research outputs found
Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal
We point out that electromagnetic one-way edge modes analogous to quantum
Hall edge states, originally predicted by Raghu and Haldane in 2D gyroelectric
photonic crystals possessing Dirac point-derived bandgaps, can appear in more
general settings. In particular, we show that the TM modes in a gyromagnetic
photonic crystal can be formally mapped to electronic wavefunctions in a
periodic electromagnetic field, so that the only requirement for the existence
of one-way edge modes is that the Chern number for all bands below a gap is
non-zero. In a square-lattice gyromagnetic Yttrium-Iron-Garnet photonic crystal
operating at microwave frequencies, which lacks Dirac points, time-reversal
breaking is strong enough that the effect should be easily observable. For
realistic material parameters, the edge modes occupy a 10% band gap. Numerical
simulations of a one-way waveguide incorporating this crystal show 100%
transmission across strong defects, such as perfect conductors several lattice
constants wide, larger than the width of the waveguide.Comment: 4 pages, 3 figures (Figs. 1 and 2 revised.
Coupled-resonator optical waveguides: Q-factor and disorder influence
Coupled resonator optical waveguides (CROW) can significantly reduce light
propagation pulse velocity due to pronounced dispersion properties. A number of
interesting applications have been proposed to benefit from such slow-light
propagation. Unfortunately, the inevitable presence of disorder, imperfections,
and a finite Q value may heavily affect the otherwise attractive properties of
CROWs. We show how finite a Q factor limits the maximum attainable group delay
time; the group index is limited by Q, but equally important the feasible
device length is itself also limited by damping resulting from a finite Q.
Adding the additional effects of disorder to this picture, limitations become
even more severe due to destructive interference phenomena, eventually in the
form of Anderson localization. Simple analytical considerations demonstrate
that the maximum attainable delay time in CROWs is limited by the intrinsic
photon lifetime of a single resonator.Comment: Accepted for Opt. Quant. Electro
Frequency-selective near-field enhancement of radiative heat transfer via photonic-crystal slabs: a general computational approach for arbitrary geometries and materials
We demonstrate the possibility of achieving enhanced frequency-selective
near-field radiative heat transfer between patterned (photonic crystal) slabs
at designable frequencies and separations, exploiting a general numerical
approach for computing heat transfer in arbitrary geometries and materials
based on the finite-difference time-domain method. Our simulations reveal a
tradeoff between selectivity and near-field enhancement as the slab--slab
separation decreases, with the patterned heat transfer eventually reducing to
the unpatterned result multiplied by a fill factor (described by a standard
proximity approximation). We also find that heat transfer can be further
enhanced at selective frequencies when the slabs are brought into a
glide-symmetric configuration, a consequence of the degeneracies associated
with the non-symmorphic symmetry group
Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing
Achieving efficient terahertz (THz) generation using compact turn-key sources
operating at room temperature and modest power levels represents one of the
critical challeges that must be overcome to realize truly practical
applications based on THz. Up to now, the most efficient approaches to THz
generation at room temperature -- relying mainly on optical rectification
schemes -- require intricate phase-matching set-ups and powerful lasers. Here
we show how the unique light-confining properties of triply-resonant photonic
resonators can be tailored to enable dramatic enhancements of the conversion
efficiency of THz generation via nonlinear frequency down-conversion processes.
We predict that this approach can be used to reduce up to three orders of
magnitude the pump powers required to reach quantum-limited conversion
efficiency of THz generation in nonlinear optical material systems.
Furthermore, we propose a realistic design readily accesible experimentally,
both for fabrication and demonstration of optimal THz conversion efficiency at
sub-W power levels
Photonic crystal optical waveguides for on-chip Bose-Einstein condensates
We propose an on-chip optical waveguide for Bose-Einstein condensates based
on the evanescent light fields created by surface states of a photonic crystal.
It is shown that the modal properties of these surface states can be tailored
to confine the condensate at distances from the chip surface significantly
longer that those that can be reached by using conventional index-contrast
guidance. We numerically demonstrate that by index-guiding the surface states
through two parallel waveguides, the atomic cloud can be confined in a
two-dimensional trap at about 1m above the structure using a power of
0.1mW.Comment: 5 pages, 4 figure
Fundamental limits to optical response in absorptive systems
At visible and infrared frequencies, metals show tantalizing promise for
strong subwavelength resonances, but material loss typically dampens the
response. We derive fundamental limits to the optical response of absorptive
systems, bounding the largest enhancements possible given intrinsic material
losses. Through basic conservation-of-energy principles, we derive
geometry-independent limits to per-volume absorption and scattering rates, and
to local-density-of-states enhancements that represent the power radiated or
expended by a dipole near a material body. We provide examples of structures
that approach our absorption and scattering limits at any frequency, by
contrast, we find that common "antenna" structures fall far short of our
radiative LDOS bounds, suggesting the possibility for significant further
improvement. Underlying the limits is a simple metric, for a material with susceptibility , that enables
broad technological evaluation of lossy materials across optical frequencies.Comment: 21 pages and 6 figures (excluding appendices, references
New features of modulational instability of partially coherent light; importance of the incoherence spectrum
It is shown that the properties of the modulational instability of partially
coherent waves propagating in a nonlinear Kerr medium depend crucially on the
profile of the incoherent field spectrum. Under certain conditions, the
incoherence may even enhance, rather than suppress, the instability. In
particular, it is found that the range of modulationally unstable wave numbers
does not necessarily decrease monotonously with increasing degree of
incoherence and that the modulational instability may still exist even when
long wavelength perturbations are stable.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media
We analytically demonstrate the existence of white light solitons in logarithmically saturable noninstantaneous nonlinear media. This incoherent soliton has elliptic Gaussian intensity profile, and elliptic Gaussian spatial correlation statistics. The existence curve of the soliton connects the strength of the nonlinearity, the spatial correlation distance as a function of frequency, and the characteristic width of the soliton. For this soliton to exist, the spatial correlation distance must be smaller for larger temporal frequency constituents of the beam
Fractal optics and beyond
Fractals, shapes comprised of self-similar parts, are not merely prescribed linear structures. A wide class of fractals can also arise from the rich dynamics inherent to nonlinear optics
- …