10 research outputs found

    Horizontal low gradient magnetophoresis behaviour of iron oxide nanoclusters at the different steps of the synthesis route

    Get PDF
    In this work the use of Horizontal Low Gradient Magnetic Field (HLGMF) (<100T/m) for filtration, control and separation of synthesized magnetic nanoparticles (NPs) is investigated. The characteristics of the suspension, size and type of the NPs are considered and discussed. For these purposes, Fe2O3 silica coated nanoclusters of about 150 nm are synthesized by co-precipitation, monodispersion and silica coating. SQUID, TEM, XRD, and z potential techniques were used to characterize the synthesized nanoclusters. An extensive magnetophoresis study was performed at different magnetophoretical conditions. Different reversible aggregation times were observed at different HLGMF, at each step of the synthesis route. In particular, differences of several orders of magnitude were observed when comparing citric acid modified NPs with silica coated nanoclusters . Reversible aggregation times are correlated to the properties of the NPs at different steps of synthesis route.Fundação para a Ciência e a Tecnologia (FCT) - Bolsa NANO/NMed-SD/0156/2007, PTCD/CTM/69316/2006

    Unveiling novel Neocosmospora species from Thai mangroves as potent biocontrol agents against Colletotrichum species

    Get PDF
    Aims: Neocosmospora species are saprobes, endophytes, and pathogens belonging to the family Nectriaceae. This study aims to investigate the taxonomy, biosynthetic potential, and application of three newly isolated Neocosmospora species from mangrove habitats in the southern part of Thailand using phylogeny, bioactivity screening, genome sequencing, and bioinformatics analysis. Methods and results: Detailed descriptions, illustrations, and a multi-locus phylogenetic tree with large subunit ribosomal DNA (LSU), internal transcribed spacer (ITS), translation elongation factor 1-alpha (ef1-α), and RNA polymerase II second largest subunit (RPB2) regions showing the placement of three fungal strains, MFLUCC 17–0253, MFLUCC 17–0257, and MFLUCC 17–0259 clustered within the Neocosmospora clade with strong statistical support. Fungal crude extracts of the new species N. mangrovei MFLUCC 17–0253 exhibited strong antifungal activity to control Colletotrichum truncatum CG-0064, while N. ferruginea MFLUCC 17–0259 exhibited only moderate antifungal activity toward C. acutatum CC-0036. Thus, N. mangrovei MFLUCC 17–0253 was sequenced by Oxford nanopore technology. The bioinformatics analysis revealed that 49.17 Mb genome of this fungus harbors 41 potential biosynthetic gene clusters. Conclusion: Two fungal isolates of Neocosmospora and a new species of N. mangrovei were reported in this study. These fungal strains showed activity against pathogenic fungi causing anthracnose in chili. In addition, full genome sequencing and bioinformatics analysis of N. mangrovei MFLUCC 17–0253 were obtained

    MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta

    Get PDF
    Osteogenesis imperfecta (OI) is a collagen-related bone dysplasia. We identified an X-linked recessive form of OI caused by defects in MBTPS2, which encodes site-2 metalloprotease (S2P). MBTPS2 missense mutations in two independent kindreds with moderate/severe OI cause substitutions at highly conserved S2P residues. Mutant S2P has normal stability, but impaired functioning in regulated intramembrane proteolysis (RIP) of OASIS, ATF6 and SREBP transcription factors, consistent with decreased proband secretion of type I collagen. Further, hydroxylation of the collagen lysine residue (K87) critical for crosslinking is reduced in proband bone tissue, consistent with decreased lysyl hydroxylase 1 in proband osteoblasts. Reduced collagen crosslinks presumptively undermine bone strength. Also, proband osteoblasts have broadly defective differentiation. These mutations provide evidence that RIP plays a fundamental role in normal bone development

    Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism

    No full text
    Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting thatmost effectors represent species-specific adaptations
    corecore