1,945 research outputs found

    Equivalence of spectral projections in semiclassical limit and a vanishing theorem for higher traces in K-theory

    Full text link
    In this paper, we study a refined L2 version of the semiclassical approximation of projectively invariant elliptic operators with invariant Morse type potentials on covering spaces of compact manifolds. We work on the level of spectral projections (and not just their traces) and obtain an information about classes of these projections in K-theory in the semiclassical limit as the coupling constant goes to zero. An important corollary is a vanishing theorem for the higher traces in cyclic cohomology for the spectral projections. This result is then applied to the quantum Hall effect. We also give a new proof that there are arbitrarily many gaps in the spectrum of the operators under consideration in the semiclassical limit.Comment: 41 pages, latex2e, uses xypic package. Minor clarifications made, some references added. Final versio

    Lifshitz fermionic theories with z=2 anisotropic scaling

    Full text link
    We construct fermionic Lagrangians with anisotropic scaling z=2, the natural counterpart of the usual z=2 Lifshitz field theories for scalar fields. We analyze the issue of chiral symmetry, construct the Noether axial currents and discuss the chiral anomaly giving explicit results for two-dimensional case. We also exploit the connection between detailed balance and the dynamics of Lifshitz theories to find different z=2 fermionic Lagrangians and construct their supersymmetric extensions.Comment: Typos corrected, comment adde

    Semiclassical asymptotics and gaps in the spectra of magnetic Schroedinger operators

    Full text link
    In this paper, we study an L2 version of the semiclassical approximation of magnetic Schroedinger operators with invariant Morse type potentials on covering spaces of compact manifolds. In particular, we are able to establish the existence of an arbitrary large number of gaps in the spectrum of these operators, in the semiclassical limit as the coupling constant goes to zero.Comment: 18 pages, Latex2e, more typos correcte

    On Eigenvalue spacings for the 1-D Anderson model with singular site distribution

    Full text link
    We study eigenvalue spacings and local eigenvalue statistics for 1D lattice Schrodinger operators with Holder regular potential, obtaining a version of Minami's inequality and Poisson statistics for the local eigenvalue spacings. The main additional new input are regular properties of the Furstenberg measures and the density of states obtained in some of the author's earlier work.Comment: 13 page

    Numerical Fitting-based Likelihood Calculation to Speed up the Particle Filter

    Get PDF
    The likelihood calculation of a vast number of particles is the computational bottleneck for the particle filter in applications where the observation information is rich. For fast computing the likelihood of particles, a numerical fitting approach is proposed to construct the Likelihood Probability Density Function (Li-PDF) by using a comparably small number of so-called fulcrums. The likelihood of particles is thereby analytically inferred, explicitly or implicitly, based on the Li-PDF instead of directly computed by utilizing the observation, which can significantly reduce the computation and enables real time filtering. The proposed approach guarantees the estimation quality when an appropriate fitting function and properly distributed fulcrums are used. The details for construction of the fitting function and fulcrums are addressed respectively in detail. In particular, to deal with multivariate fitting, the nonparametric kernel density estimator is presented which is flexible and convenient for implicit Li-PDF implementation. Simulation comparison with a variety of existing approaches on a benchmark 1-dimensional model and multi-dimensional robot localization and visual tracking demonstrate the validity of our approach.Comment: 42 pages, 17 figures, 4 tables and 1 appendix. This paper is a draft/preprint of one paper submitted to the IEEE Transaction

    Solutions of mKdV in classes of functions unbounded at infinity

    Full text link
    In 1974 P. Lax introduced an algebro-analytic mechanism similar to the Lax L-A pair. Using it we prove global existence and uniqueness for solutions of the initial value problem for mKdV in classes of smooth functions which can be unbounded at infinity, and may even include functions which tend to infinity with respect to the space variable. Moreover, we establish the invariance of the spectrum and the unitary type of the Schr{\"o}dinger operator under the KdV flow and the invariance of the spectrum and the unitary type of the impedance operator under the mKdV flow for potentials in these classes.Comment: 35 pages, new results about spectra and eigenfunctions of Schr\"odinger operators added, new references adde

    Trends of the major porin gene (ompF) evolution

    Get PDF
    OmpF is one of the major general porins of Enterobacteriaceae that belongs to the first line of bacterial defense and interactions with the biotic as well as abiotic environments. Porins are surface exposed and their structures strongly reflect the history of multiple interactions with the environmental challenges. Unfortunately, little is known on diversity of porin genes of Enterobacteriaceae and the genus Yersinia especially. We analyzed the sequences of the ompF gene from 73 Yersinia strains covering 14 known species. The phylogenetic analysis placed most of the Yersinia strains in the same line assigned by 16S rDNA-gyrB tree. Very high congruence in the tree topologies was observed for Y. enterocolitica, Y. kristensenii, Y. ruckeri, indicating that intragenic recombination in these species had no effect on the ompF gene. A significant level of intra- and interspecies recombination was found for Y. aleksiciae, Y. intermedia and Y. mollaretii. Our analysis shows that the ompF gene of Yersinia has evolved with nonrandom mutational rate under purifying selection. However, several surface loops in the OmpF porin contain positively selected sites, which very likely reflect adaptive diversification Yersinia to their ecological niches. To our knowledge, this is a first investigation of diversity of the porin gene covering the whole genus of the family Enterobacteriaceae. This study demonstrates that recombination and positive selection both contribute to evolution of ompF, but the relative contribution of these evolutionary forces are different among Yersinia species
    corecore