189 research outputs found

    Thirty-minute plasma sustainment by real-time magnetic-axis swing for effective divertor-load-dispersion in the Large Helical Device

    Get PDF
    Achieving steady-state plasma operation at high plasma temperatures is one of the important goals of worldwide magnetic fusion research. A high temperature of approximately 2 keV, and steady-state plasma-sustainment operation of the Large Helical Device (LHD) [O. Motojima, K. Akaishi, H. Chikaraishi et al., Nucl. Fusion 40, 599 (2000)] is reported. High-temperature plasmas were created and maintained for more than 30 min with a world record injected heating power of 1.3 GJ. The three-dimensional heat-deposition profile of the LHD helical divertor was modified and during long-pulse discharges it effectively dispersed the heat load using a magnetic-axis swing technique developed at the LHD. A sweep of only 3 cm of the major radius of the magnetic axis position (less than 1% of the major radius of the LHD) was enough to disperse the divertor heat load. The modification of the heat-load profile was explained well by field-line tracing. The steady-state plasma was heated and sustained mainly by hydrogen minority ion heating using ion cyclotron range of frequencies. The operation lasted until a sudden increase of radiation loss occurred, presumably because of wall metal flakes dropping into the plasma. The sustained line-averaged electron density was approximately 0.7?0.8×10^19 m^?3. The average input power was 680 kW, and the plasma duration was 31 min 45 s. This successful long operation shows that the heliotron configuration has a high potential as a steady-state fusion reactor

    Developments in the Ni–Nb–Zr amorphous alloy membranes

    Get PDF
    Most of the global H2 production is derived from hydrocarbon-based fuels, and efficient H2/CO2 separation is necessary to deliver a high-purity H2 product. Hydrogen-selective alloy membranes are emerging as a viable alternative to traditional pressure swing adsorption processes as a means for H2/CO2 separation. These membranes can be formed from a wide range of alloys, and those based on Pd are the closest to commercial deployment. The high cost of Pd (USD *31,000 kg-1) is driving the development of less-expensive alternatives, including inexpensive amorphous (Ni60Nb40)100-xZrx alloys. Amorphous alloy membranes can be fabricated directly from the molten state into continuous ribbons via melt spinning and depending on the composition can exhibit relatively high hydrogen permeability between 473 and 673 K. Here we review recent developments in these low-cost membrane materials, especially with respect to permeation behavior, electrical transport properties, and understanding of local atomic order. To further understand the nature of these solids, atom probe tomography has been performed, revealing amorphous Nb-rich and Zr-rich clusters embedded in majority Ni matrix whose compositions deviated from the nominal overall composition of the membrane

    The IL-1-Like Cytokine IL-33 Is Constitutively Expressed in the Nucleus of Endothelial Cells and Epithelial Cells In Vivo: A Novel ‘Alarmin’?

    Get PDF
    BACKGROUND: Interleukin-33 (IL-33) is an IL-1-like cytokine ligand for the IL-1 receptor-related protein ST2, that activates mast cells and Th2 lymphocytes, and induces production of Th2-associated cytokines in vivo. We initially discovered IL-33 as a nuclear factor (NF-HEV) abundantly expressed in high endothelial venules from lymphoid organs, that associates with chromatin and exhibits transcriptional regulatory properties. This suggested that, similarly to IL-1alpha and chromatin-associated cytokine HMGB1, IL-33 may act as both a cytokine and a nuclear factor. Although the activity of recombinant IL-33 has been well characterized, little is known yet about the expression pattern of endogenous IL-33 in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that IL-33 is constitutively and abundantly expressed in normal human tissues. Using a combination of human tissue microarrays and IL-33 monoclonal and polyclonal antibodies, we found that IL-33 is a novel nuclear marker of the endothelium widely expressed along the vascular tree. We observed abundant nuclear expression of IL-33 in endothelial cells from both large and small blood vessels in most normal human tissues, as well as in human tumors. In addition to endothelium, we also found constitutive nuclear expression of IL-33 in fibroblastic reticular cells of lymphoid tissues, and epithelial cells of tissues exposed to the environment, including skin keratinocytes and epithelial cells of the stomach, tonsillar crypts and salivary glands. CONCLUSIONS/SIGNIFICANCE: Together, our results indicate that, unlike inducible cytokines, IL-33 is constitutively expressed in normal human tissues. In addition, they reveal that endothelial cells and epithelial cells constitute major sources of IL-33 in vivo. Based on these findings, we speculate that IL-33 may function, similarly to the prototype 'alarmin' HMGB1, as an endogenous 'danger' signal to alert the immune system after endothelial or epithelial cell damage during trauma or infection

    Soluble ST2 Levels Are Associated with Bleeding in Patients with Severe Leptospirosis

    Get PDF
    Leptospirosis is a bacterial disease that is mainly spread by rodents and other small mammals. Transmission frequently occurs in (sub-) tropical countries, where environmental circumstances are most favourable. Severe leptospirosis can cause bleeding and vital organ dysfunction. An exaggerated immune response is thought to play an important role in the pathophysiology of leptospirosis. Soluble ST2 (sST2) is thought to inhibit negative regulatory pathways of this response. Soluble ST2 is produced by cells that surround, for example, blood vessels, and several of these blood cells play an important part in the host immune response. In an observational study, we measured the extent of sST2 release in patients suffering from severe leptospirosis. We found that patients that died from leptospirosis displayed higher levels of sST2. Moreover, from this study we have seen that sST2 levels were associated with bleeding, whereas other markers of infection were not. In an experiment, we showed that (white) blood cells did not seem to be the source of sST2 production. Damage to blood vessels is likely to cause bleeding in leptospirosis patients, exposing sST2 producing cells like fibroblasts to the blood stream. Hence, we believe that sST2 may be used as a marker for tissue damage in patients suffering from severe leptospirosis

    Soluble ST2 plasma concentrations predict mortality in severe sepsis

    Get PDF
    Patients with sepsis-after surviving the initial hyperinflammatory phase-display features consistent with immunosuppression, including hyporesponsiveness of immunocompetent cells to bacterial agents. Immunosuppression is thought to be facilitated by negative regulators of toll-like receptors, including membrane-bound ST2. We investigated the release of soluble ST2 (sST2), a decoy receptor that inhibits membrane-bound ST2 signaling, during sepsis. The study population comprised 95 patients with severe sepsis admitted to one of two intensive care units (ICUs) at the day the diagnosis of severe sepsis was made. Blood was obtained daily from admission (day 0) until day 7 and finally at day 14. Twenty-four healthy subjects served as controls. sST2 and cytokines were measured in serum. Mortality among patients was 34% in the ICU and 45% in the hospital. On admission, sepsis patients had higher sST2 levels [10,989 (7,871-15,342) pg/ml, geometric mean (95% confidence interval, CI)] than controls [55 (20-145) pg/ml, P < 0.0001]. Serum sST2 remained elevated in patients from day 0 to 14 and correlated with disease severity scores (P < 0.001) and cytokine levels on day 0 and during course of disease (P < 0.0001). Nonsurvivors displayed elevated sST2 levels compared with survivors of the intensive care unit (P < 0.0001). Sepsis results in sustained elevation of serum sST2 levels, which correlates with disease severity and mortalit

    Ion cyclotron range of frequency heating experiments on the large helical device and high energy ion behavior

    Get PDF
    Ion cyclotron range of frequency (ICRF) heating experiments on the Large Helical Device (LHD) [O. Motojima et al. Fus. Eng. Des. 20, 3 (1993)] achieved significant advances during the third experimental campaign carried out in 1999. They showed significant results in two heating modes; these are modes of the ICH-sustained plasma with large plasma stored energy and the neutral beam injection (NBI) plasma under additional heating. A long-pulse operation of more than 1 minute was achieved at a level of 1 MW. The characteristics of the ICRF heated plasma are the same as those of the NBI heated plasma. The energy confinement time is longer than that of International Stellarator Scaling 95. Three keys to successful ICRF heating are as follows: (1) an increase in the magnetic field strength, (2) the employment of an inward shift of the magnetic axis, (3) the installation of actively cooled graphite plates along the divertor legs. Highly energetic protons accelerated by the ICRF electric field were experimentally observed in the energy range from 30 to 250 keV and the tail temperature depended on the energy balance between the wave heating and the electron drag. The transfer efficiency from the high energy ions to the bulk plasma was deduced from the increase in the energy confinement time due to the high energy ions in the lower density discharge, which agrees fairly well with the result obtained by the Monte Carlo simulation. The transfer efficiency is expected to be 95% at an electron density of more than n_e=5.0×10^19 m^?3 even in the high power heating of 10 MW. The accumulation of impurities, e.g., FeXVI and OV was not observed in high rf power and long pulse operation. The well-defined divertor intrinsic to LHD is believed to be useful in reducing the impurity influx
    • …
    corecore