7 research outputs found

    Modelling the human epidermis in vitro: tools for basic and applied research

    Get PDF
    Culture models of tissues and organs are valuable tools developed by basic research that help investigation of the body functions. Modelling is aimed at simplifying experimental procedures in order to better understand biological phenomena, and consequently, when sufficiently characterized, culture models can also be utilized with high potential in applied research. In skin biology and pathology, the development of cultures of keratinocytes as monolayers has allowed the elucidation of most functional and structural characteristics of the cell type. Beside the multiple great successes that have been obtained with this type of culture, this review draws attention on several neglected characteristics of monolayer cultures. The more sophisticated models created in order to reconstruct the fully differentiated epidermis have followed the monolayers. The epidermal reconstruction produces all typical layers found in vivo and thus makes the model much less simple, but only this kind of model allows the study of full differentiation in keratinocyte and production of the cornified barrier. In addition to its interest in basic research, the reconstructed epidermis is currently gaining a lot of interest for applied research, particularly as an alternative to laboratory animals in the chemical and cosmetic industry. Today several commercial providers propose reconstructed skin or epidermis, but in vitro assays on these materials are still under development. In order to be beneficial at long term, the validation of assays must be performed on a material whose availability will not be interrupted. We warn here providers and customers that the longevity of in vitro assays will be guaranteed only if these assays are done with well-described models, prepared according to published procedures, and must consider having a minimum of two independent simultaneous producers of similar material

    Merkel Cells as Putative Regulatory Cells in Skin Disorders: An In Vitro Study

    Get PDF
    Merkel cells (MCs) are involved in mechanoreception, but several lines of evidence suggest that they may also participate in skin disorders through the release of neuropeptides and hormones. In addition, MC hyperplasias have been reported in inflammatory skin diseases. However, neither proliferation nor reactions to the epidermal environment have been demonstrated. We established a culture model enriched in swine MCs to analyze their proliferative capability and to discover MC survival factors and modulators of MC neuroendocrine properties. In culture, MCs reacted to bFGF by extending outgrowths. Conversely, neurotrophins failed to induce cell spreading, suggesting that they do not act as a growth factor for MCs. For the first time, we provide evidence of proliferation in culture through Ki-67 immunoreactivity. We also found that MCs reacted to histamine or activation of the proton gated/osmoreceptor TRPV4 by releasing vasoactive intestinal peptide (VIP). Since VIP is involved in many pathophysiological processes, its release suggests a putative regulatory role for MCs in skin disorders. Moreover, in contrast to mechanotransduction, neuropeptide exocytosis was Ca2+-independent, as inhibition of Ca2+ channels or culture in the absence of Ca2+ failed to decrease the amount of VIP released. We conclude that neuropeptide release and neurotransmitter exocytosis may be two distinct pathways that are differentially regulated
    corecore