497 research outputs found

    Drift rate control of a Brownian processing system

    Full text link
    A system manager dynamically controls a diffusion process Z that lives in a finite interval [0,b]. Control takes the form of a negative drift rate \theta that is chosen from a fixed set A of available values. The controlled process evolves according to the differential relationship dZ=dX-\theta(Z) dt+dL-dU, where X is a (0,\sigma) Brownian motion, and L and U are increasing processes that enforce a lower reflecting barrier at Z=0 and an upper reflecting barrier at Z=b, respectively. The cumulative cost process increases according to the differential relationship d\xi =c(\theta(Z)) dt+p dU, where c(\cdot) is a nondecreasing cost of control and p>0 is a penalty rate associated with displacement at the upper boundary. The objective is to minimize long-run average cost. This problem is solved explicitly, which allows one to also solve the following, essentially equivalent formulation: minimize the long-run average cost of control subject to an upper bound constraint on the average rate at which U increases. The two special problem features that allow an explicit solution are the use of a long-run average cost criterion, as opposed to a discounted cost criterion, and the lack of state-related costs other than boundary displacement penalties. The application of this theory to power control in wireless communication is discussed.Comment: Published at http://dx.doi.org/10.1214/105051604000000855 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Towards segmentation and spatial alignment of the human embryonic brain using deep learning for atlas-based registration

    Full text link
    We propose an unsupervised deep learning method for atlas based registration to achieve segmentation and spatial alignment of the embryonic brain in a single framework. Our approach consists of two sequential networks with a specifically designed loss function to address the challenges in 3D first trimester ultrasound. The first part learns the affine transformation and the second part learns the voxelwise nonrigid deformation between the target image and the atlas. We trained this network end-to-end and validated it against a ground truth on synthetic datasets designed to resemble the challenges present in 3D first trimester ultrasound. The method was tested on a dataset of human embryonic ultrasound volumes acquired at 9 weeks gestational age, which showed alignment of the brain in some cases and gave insight in open challenges for the proposed method. We conclude that our method is a promising approach towards fully automated spatial alignment and segmentation of embryonic brains in 3D ultrasound

    First-Digit Law in Nonextensive Statistics

    Full text link
    Nonextensive statistics, characterized by a nonextensive parameter qq, is a promising and practically useful generalization of the Boltzmann statistics to describe power-law behaviors from physical and social observations. We here explore the unevenness of the first digit distribution of nonextensive statistics analytically and numerically. We find that the first-digit distribution follows Benford's law and fluctuates slightly in a periodical manner with respect to the logarithm of the temperature. The fluctuation decreases when qq increases, and the result converges to Benford's law exactly as qq approaches 2. The relevant regularities between nonextensive statistics and Benford's law are also presented and discussed.Comment: 11 pages, 3 figures, published in Phys. Rev.

    Maximum-likelihood absorption tomography

    Full text link
    Maximum-likelihood methods are applied to the problem of absorption tomography. The reconstruction is done with the help of an iterative algorithm. We show how the statistics of the illuminating beam can be incorporated into the reconstruction. The proposed reconstruction method can be considered as a useful alternative in the extreme cases where the standard ill-posed direct-inversion methods fail.Comment: 7 pages, 5 figure

    Shift in critical temperature for random spatial permutations with cycle weights

    Full text link
    We examine a phase transition in a model of random spatial permutations which originates in a study of the interacting Bose gas. Permutations are weighted according to point positions; the low-temperature onset of the appearance of arbitrarily long cycles is connected to the phase transition of Bose-Einstein condensates. In our simplified model, point positions are held fixed on the fully occupied cubic lattice and interactions are expressed as Ewens-type weights on cycle lengths of permutations. The critical temperature of the transition to long cycles depends on an interaction-strength parameter α\alpha. For weak interactions, the shift in critical temperature is expected to be linear in α\alpha with constant of linearity cc. Using Markov chain Monte Carlo methods and finite-size scaling, we find c=0.618±0.086c = 0.618 \pm 0.086. This finding matches a similar analytical result of Ueltschi and Betz. We also examine the mean longest cycle length as a fraction of the number of sites in long cycles, recovering an earlier result of Shepp and Lloyd for non-spatial permutations.Comment: v2 incorporated reviewer comments. v3 removed two extraneous figures which appeared at the end of the PDF

    On Exceptional Times for generalized Fleming-Viot Processes with Mutations

    Full text link
    If Y\mathbf Y is a standard Fleming-Viot process with constant mutation rate (in the infinitely many sites model) then it is well known that for each t>0t>0 the measure Yt\mathbf Y_t is purely atomic with infinitely many atoms. However, Schmuland proved that there is a critical value for the mutation rate under which almost surely there are exceptional times at which Y\mathbf Y is a finite sum of weighted Dirac masses. In the present work we discuss the existence of such exceptional times for the generalized Fleming-Viot processes. In the case of Beta-Fleming-Viot processes with index α]1,2[\alpha\in\,]1,2[ we show that - irrespectively of the mutation rate and α\alpha - the number of atoms is almost surely always infinite. The proof combines a Pitman-Yor type representation with a disintegration formula, Lamperti's transformation for self-similar processes and covering results for Poisson point processes

    Distribution of roots of random real generalized polynomials

    Full text link
    The average density of zeros for monic generalized polynomials, Pn(z)=ϕ(z)+k=1nckfk(z)P_n(z)=\phi(z)+\sum_{k=1}^nc_kf_k(z), with real holomorphic ϕ,fk\phi ,f_k and real Gaussian coefficients is expressed in terms of correlation functions of the values of the polynomial and its derivative. We obtain compact expressions for both the regular component (generated by the complex roots) and the singular one (real roots) of the average density of roots. The density of the regular component goes to zero in the vicinity of the real axis like Imz|\hbox{\rm Im}\,z|. We present the low and high disorder asymptotic behaviors. Then we particularize to the large nn limit of the average density of complex roots of monic algebraic polynomials of the form Pn(z)=zn+k=1nckznkP_n(z) = z^n +\sum_{k=1}^{n}c_kz^{n-k} with real independent, identically distributed Gaussian coefficients having zero mean and dispersion δ=1nλ\delta = \frac 1{\sqrt{n\lambda}}. The average density tends to a simple, {\em universal} function of ξ=2nlogz\xi={2n}{\log |z|} and λ\lambda in the domain ξcothξ2nsinarg(z)\xi\coth \frac{\xi}{2}\ll n|\sin \arg (z)| where nearly all the roots are located for large nn.Comment: 17 pages, Revtex. To appear in J. Stat. Phys. Uuencoded gz-compresed tarfile (.66MB) containing 8 Postscript figures is available by e-mail from [email protected]

    Efficient Bayesian-based Multi-View Deconvolution

    Full text link
    Light sheet fluorescence microscopy is able to image large specimen with high resolution by imaging the sam- ples from multiple angles. Multi-view deconvolution can significantly improve the resolution and contrast of the images, but its application has been limited due to the large size of the datasets. Here we present a Bayesian- based derivation of multi-view deconvolution that drastically improves the convergence time and provide a fast implementation utilizing graphics hardware.Comment: 48 pages, 20 figures, 1 table, under review at Nature Method

    On leaders and condensates in a growing network

    Full text link
    The Bianconi-Barabasi model of a growing network is revisited. This model, defined by a preferential attachment rule involving both the degrees of the nodes and their intrinsic fitnesses, has the fundamental property to undergo a phase transition to a condensed phase below some finite critical temperature, for an appropriate choice of the distribution of fitnesses. At high temperature it exhibits a crossover to the Barabasi-Albert model, and at low temperature, where the fitness landscape becomes very rugged, a crossover to the recently introduced record-driven growth process. We first present an analysis of the history of leaders, the leader being defined as the node with largest degree at a given time. In the generic finite-temperature regime, new leaders appear endlessly, albeit on a doubly logarithmic time scale, i.e., extremely slowly. We then give a novel picture for the dynamics in the condensed phase. The latter is characterized by an infinite hierarchy of condensates, whose sizes are non-self-averaging and keep fluctuating forever.Comment: 29 pages, 13 figures, 3 tables. A few minor change

    Real roots of Random Polynomials: Universality close to accumulation points

    Full text link
    We identify the scaling region of a width O(n^{-1}) in the vicinity of the accumulation points t=±1t=\pm 1 of the real roots of a random Kac-like polynomial of large degree n. We argue that the density of the real roots in this region tends to a universal form shared by all polynomials with independent, identically distributed coefficients c_i, as long as the second moment \sigma=E(c_i^2) is finite. In particular, we reveal a gradual (in contrast to the previously reported abrupt) and quite nontrivial suppression of the number of real roots for coefficients with a nonzero mean value \mu_n = E(c_i) scaled as \mu_n\sim n^{-1/2}.Comment: Some minor mistakes that crept through into publication have been removed. 10 pages, 12 eps figures. This version contains all updates, clearer pictures and some more thorough explanation
    corecore