45 research outputs found

    The Use of Phage-Displayed Peptide Libraries to Develop Tumor-Targeting Drugs

    Get PDF
    Monoclonal antibodies have been successfully utilized as cancer-targeting therapeutics and diagnostics, but the efficacies of these treatments are limited in part by the size of the molecules and non-specific uptake by the reticuloendothelial system. Peptides are much smaller molecules that can specifically target cancer cells and as such may alleviate complications with antibody therapy. Although many endogenous and exogenous peptides have been developed into clinical therapeutics, only a subset of these consists of cancer-targeting peptides. Combinatorial biological libraries such as bacteriophage-displayed peptide libraries are a resource of potential ligands for various cancer-related molecular targets. Target-binding peptides can be affinity selected from complex mixtures of billions of displayed peptides on phage and further enriched through the biopanning process. Various cancer-specific ligands have been isolated by in vitro, in vivo, and ex vivo screening methods. As several peptides derived from phage-displayed peptide library screenings have been developed into therapeutics in current clinical trials, which validates peptide-targeting potential, the use of phage display to identify cancer-targeting therapeutics should be further exploited

    Rapid Probing of Biological Surfaces with a Sparse-Matrix Peptide Library

    Get PDF
    Finding unique peptides to target specific biological surfaces is crucial to basic research and technology development, though methods based on biological arrays or large libraries limit the speed and ease with which these necessary compounds can be found. We reasoned that because biological surfaces, such as cell surfaces, mineralized tissues, and various extracellular matrices have unique molecular compositions, they present unique physicochemical signatures to the surrounding medium which could be probed by peptides with appropriately corresponding physicochemical properties. To test this hypothesis, a naïve pilot library of 36 peptides, varying in their hydrophobicity and charge, was arranged in a two-dimensional matrix and screened against various biological surfaces. While the number of peptides in the matrix library was very small, we obtained “hits” against all biological surfaces probed. Sequence refinement of the “hits” led to peptides with markedly higher specificity and binding activity against screened biological surfaces. Genetic studies revealed that peptide binding to bacteria was mediated, at least in some cases, by specific cell-surface molecules, while examination of human tooth sections showed that this method can be used to derive peptides with highly specific binding to human tissue

    Targeting of Hepatoma Cell and Suppression of Tumor Growth by a Novel 12mer Peptide Fused to Superantigen TSST-1

    No full text
    Hepatocellular carcinoma (HCC), one of the most common and malignant tumors worldwide, is unresponsive to any of the available therapies. Using intact HCC cells as therapeutic targets, we isolated a novel peptide, denoted HCC79 (KSLSRHDHIHHH), from a phage display peptide library. HCC79 can bind to hepatoma cell membranes with high affinity and specificity. Remarkably, competitive binding assays demonstrated that HCC79 competed with HAb25, a specific antibody for HCC, in binding to hepatoma cells. The corresponding synthetic peptide did not inhibit tumor proliferation directly, but repressed tumor invasion significantly in a cell migration assay. Moreover, we explored the potential of the selected peptide to deliver a superantigen (SAg) to cancer cells, to attain a significant cell-targeting effect. When the peptide is fused to the TSST-1 SAg, the resulting fusion protein could bind to hepatoma cells with high affinity in vitro and improved the tumor inhibition effect by activating T lymphocyte cells in vitro and in vivo, compared with TSST-1 alone. Taken together, our results indicate that this peptide and its future derivatives may have the potential to be developed into highly specific therapeutic agents against cancer

    University Incubators in the UK

    No full text
    The overall aim of this paper is to deepen the understanding of forming and effectively managing university incubators in the UK. Recognizing that the term 'business incubator' embraces a wide range of institutions, all of which aim to foster the creation and development of enterprises – SMEs or corporate ventures – by established organizations, the formation of different types of university incubators is explored from the perspective of the incubator managers who are involved in the process. Four case studies are presented, which show how the incubator managers discern incubation practices within the current UK system of business incubation and develop their particular programmes. The case studies are constructed by generating in-depth case material through interviews with the incubator managers, participant observation in one setting, and documentary search during 2002 and the first half of 2003. Evaluating the contextual constraints and opportunities in the UK, it is illustrated that the contextual issues are by their nature complex, dynamic and diverse, and they are also central to understanding the way the incubation programmes are shaped and reshaped over time. Some core ideas and lessons have been drawn from the research and it is hoped that they can help incubation community members to re-evaluate their own experiences and assist public policy makers in gauging their policies
    corecore