44 research outputs found
Breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model
<p>Abstract</p> <p>Background</p> <p>Genomic selection involves breeding value estimation of selection candidates based on high-density SNP genotypes. To quantify the potential benefit of genomic selection, accuracies of estimated breeding values (EBV) obtained with different methods using pedigree or high-density SNP genotypes were evaluated and compared in a commercial layer chicken breeding line.</p> <p>Methods</p> <p>The following traits were analyzed: egg production, egg weight, egg color, shell strength, age at sexual maturity, body weight, albumen height, and yolk weight. Predictions appropriate for early or late selection were compared. A total of 2,708 birds were genotyped for 23,356 segregating SNP, including 1,563 females with records. Phenotypes on relatives without genotypes were incorporated in the analysis (in total 13,049 production records).</p> <p>The data were analyzed with a Reduced Animal Model using a relationship matrix based on pedigree data or on marker genotypes and with a Bayesian method using model averaging. Using a validation set that consisted of individuals from the generation following training, these methods were compared by correlating EBV with phenotypes corrected for fixed effects, selecting the top 30 individuals based on EBV and evaluating their mean phenotype, and by regressing phenotypes on EBV.</p> <p>Results</p> <p>Using high-density SNP genotypes increased accuracies of EBV up to two-fold for selection at an early age and by up to 88% for selection at a later age. Accuracy increases at an early age can be mostly attributed to improved estimates of parental EBV for shell quality and egg production, while for other egg quality traits it is mostly due to improved estimates of Mendelian sampling effects. A relatively small number of markers was sufficient to explain most of the genetic variation for egg weight and body weight.</p
Response and inbreeding from a genomic selection experiment in layer chickens
International audienceGenomic selection (GS) using estimated breeding values (GS-EBV) based on dense marker data is a promising approach for genetic improvement. A simulation study was undertaken to illustrate the opportunities offered by GS for designing breeding programs. It consisted of a selection program for a sex-limited trait in layer chickens, which was developed by deterministic predictions under different scenarios. Later, one of the possible schemes was implemented in a real population of layer chicken.MethodsIn the simulation, the aim was to double the response to selection per year by reducing the generation interval by 50 %, while maintaining the same rate of inbreeding per year. We found that GS with retraining could achieve the set objectives while requiring 75 % fewer reared birds and 82 % fewer phenotyped birds per year. A multi-trait GS scenario was subsequently implemented in a real population of brown egg laying hens. The population was split into two sub-lines, one was submitted to conventional phenotypic selection, and one was selected based on genomic prediction. At the end of the 3-year experiment, the two sub-lines were compared for multiple performance traits that are relevant for commercial egg production.ResultsBirds that were selected based on genomic prediction outperformed those that were submitted to conventional selection for most of the 16 traits that were included in the index used for selection. However, although the two programs were designed to achieve the same rate of inbreeding per year, the realized inbreeding per year assessed from pedigree was higher in the genomic selected line than in the conventionally selected line.ConclusionsThe results demonstrate that GS is a promising alternative to conventional breeding for genetic improvement of layer chickens
The status of the professional development programmes of the health and fitness industry in Turkey
The purpose of this study was to determine the status of the professional development programmes of the health and fitness industry in Turkey. The instrument was the 'Survey of the Health and Fitness Industry' (Deane Mantia, 2000). Frequency and percentile rankings were used to analyse the responses (267) of the two subgroups (61% fitness professionals, 39% consumers). The results demonstrated that the professional development programmes and the fitness industry were not complementary and the fitness certifications were underrated by the health and fitness industry professionals. It was recommended that a governing body should be established to develop standardisation for the professional development programmes of the health and fitness industry and the universities should be encouraged to open fitness management programmes to protect the industry from abuse