355 research outputs found
A modified Schwinger's formula for the Casimir effect
After briefly reviewing how the (proper-time) Schwinger's formula works for
computing the Casimir energy in the case of "scalar electrodynamics" where the
boundary conditions are dictated by two perfectly conducting parallel plates
with separation "a" in the Z-axis, we propose a slightly modification in the
previous approach based on an analytical continuation method. As we will see,
for the case at hand our formula does not need the use of Poisson summation to
get a (renormalized) finite result.Comment: 6 pages, DFTUZ/93/14 (a short version will appear in the Letters in
Math. Phys.
Frequency of sleep bruxism behaviors in healthy young adults over a four-night recording span in the home environment
Objectives: This study aimed to assess frequency and multiple-night variability of sleep bruxism (SB) as well as sleep-time masticatory muscle activities (sMMA) in the home environment in healthy young adults using a portable device that provides electrocardiographic (ECG) and surface electromyographic (EMG) recordings from the masticatory muscles. Methods: The study was performed on 27 subjects (11 males, 16 females; mean age 28.3 ± 1.7 years) selected from a sample of healthy young students. Evaluation was carried out for four nights to record data on masticatory muscle activities using a compact portable device that previously showed an excellent agreement with polysomnography (PSG) for the detection of SB events. The number of SB episodes per sleep hour (bruxism index), and the number of tonic, phasic and mixed sMMA events per hour were assessed. A descriptive evaluation of the frequency of each condition was performed on all individuals, and gender comparison was investigated. Results: Mean sleep duration over the four recording nights was 7 ± 1.3 h. The average SB index was 3.6 ± 1.2. Most of the sMMA were tonic (49.9%) and phasic (44.1%). An ANOVA test showed the absence of significant differences between the four nights. No significant gender differences were detected for the SB index, phasic or tonic contractions; conversely, gender differences were detected for mixed sMMA events (p < 0.05). Conclusion: This investigation supports the concept that sMMA events are quite frequent in healthy adults. Differences over the four-night recording span were not significant. These data could be compared to subjects with underlying conditions that may lead to an additive bruxism activity and possible clinical consequences
Pilot Study of a New Mandibular Advancement Device
This study was conducted to determine the efficacy of a customized mandibular advancement device (MAD) in the treatment of obstructive sleep apnea (OSA). Eight patients (M = 3; F = 5; mean age = 56.3 ± 9.4) with a diagnosis of OSA confirmed by polysomnography (PSG) were re-cruited on the basis of the following inclusion criteria: apnea-hypopnea index (AHI) > 5, age between 18 and 75 years, body mass index (BMI) < 25, and PSG data available at baseline (T0). All were treated with the new NOA® MAD by OrthoApnea (NOA® ) for at least 3 months; PSG with NOA in situ was performed after 3 months of treatment (T1). The following parameters were calculated at T0 and T1: AHI, supine AHI, oxygen desaturation index (ODI), percentage of recording time spent with oxygen saturation <90% (SpO2 < 90%), and mean oxygen desaturation (MeanSpO2%). Data were submitted for statistical analysis. The baseline values were AHI = 21.33 ± 14.79, supine AHI = 35.64 ± 12.80, ODI = 17.51 ± 13.5, SpO2 < 90% = 7.82 ± 17.08, and MeanSpO2% = 93.45 ± 1.86. Four patients had mild OSA (5 > AHI < 15), one moderate OSA (15 > AHI < 30), and three severe OSA (AHI > 30). After treatment with NOA®, statistically significant improvements in AHI (8.6 ± 4.21) and supine AHI (11.21 ± 7.26) were recorded. OrthoApnea NOA® could be an effective alternative in the treatment of OSA: the device improved the PSG parameters assessed
Neuroprotective peptide ADNF-9 in fetal brain of C57BL/6 mice exposed prenatally to alcohol
<p>Abstract</p> <p>Background</p> <p>A derived peptide from activity-dependent neurotrophic factor (ADNF-9) has been shown to be neuroprotective in the fetal alcohol exposure model. We investigated the neuroprotective effects of ADNF-9 against alcohol-induced apoptosis using TUNEL staining. We further characterize in this study the proteomic architecture underlying the role of ADNF-9 against ethanol teratogenesis during early fetal brain development using liquid chromatography in conjunction with tandem mass spectrometry (LC-MS/MS).</p> <p>Methods</p> <p>Pregnant C57BL/6 mice were exposed from embryonic days 7-13 (E7-E13) to a 25% ethanol-derived calorie [25% EDC, Alcohol (ALC)] diet, a 25% EDC diet simultaneously administered i.p. ADNF-9 (ALC/ADNF-9), or a pair-fed (PF) liquid diet. At E13, fetal brains were collected from 5 dams from each group, weighed, and frozen for LC-MS/MS procedure. Other fetal brains were fixed for TUNEL staining.</p> <p>Results</p> <p>Administration of ADNF-9 prevented alcohol-induced reduction in fetal brain weight and alcohol-induced increases in cell death. Moreover, individual fetal brains were analyzed by LC-MS/MS. Statistical differences in the amounts of proteins between the ALC and ALC/ADNF-9 groups resulted in a distinct data-clustering. Significant upregulation of several important proteins involved in brain development were found in the ALC/ADNF-9 group as compared to the ALC group.</p> <p>Conclusion</p> <p>These findings provide information on potential mechanisms underlying the neuroprotective effects of ADNF-9 in the fetal alcohol exposure model.</p
Schwinger's Method for the Massive Casimir Effect
We apply to the massive scalar field a method recently proposed by Schwinger
to calculate the Casimir effect. The method is applied with two different
regularization schemes: the Schwinger original one by means of Poisson formula
and another one by means of analytical continuation.Comment: plain TeX, 6 pages, DFTUZ-93-2
Normalization Perturbation: A Simple Domain Generalization Method for Real-World Domain Shifts
Improving model's generalizability against domain shifts is crucial,especially for safety-critical applications such as autonomous driving.Real-world domain styles can vary substantially due to environment changes andsensor noises, but deep models only know the training domain style. Such domainstyle gap impedes model generalization on diverse real-world domains. Ourproposed Normalization Perturbation (NP) can effectively overcome this domainstyle overfitting problem. We observe that this problem is mainly caused by thebiased distribution of low-level features learned in shallow CNN layers. Thus,we propose to perturb the channel statistics of source domain features tosynthesize various latent styles, so that the trained deep model can perceivediverse potential domains and generalizes well even without observations oftarget domain data in training. We further explore the style-sensitive channelsfor effective style synthesis. Normalization Perturbation only relies on asingle source domain and is surprisingly effective and extremely easy toimplement. Extensive experiments verify the effectiveness of our method forgeneralizing models under real-world domain shifts.<br
Effects of leas and mecury on the blood proteome of children
Heavy metal exposure in children has been associated with a variety of physiological and neurological problems. The goal of this study was to utilize proteomics to enhance the understanding of biochemical interactions responsible for the health problems related to lead and mercury exposure at concentrations well below CDC guidelines. Blood plasma and serum samples from 34 children were depleted of their most abundant proteins using antibody-based affinity columns and analyzed using two different methods, LC-MS/MS and 2-D electrophoresis coupled with MALDI-TOF/MS and tandem mass spectrometry. Apolipoprotein E demonstrated an inverse significant association with lead concentrations (average being one microgram/deciliter) as deduced from LC-MS/MS and 2-D electrophoresis and confirmed by Western blot analysis. This coincides with prior findings that Apolipoprotein E genotype moderates neurobehavioral effects in individuals exposed to lead. Fifteen other proteins were identified by LC-MS/MS as proteins of interest exhibiting expressional differences in the presence of environmental lead and mercury. Brooks Gump is currently at Syracuse University
Predictability of Invisalign® Clear Aligners Using OrthoPulse®: A Retrospective Study
This preliminary retrospective study evaluates how effective the OrthoPulse (Biolux Technology, Austria) is in increasing the predictability of orthodontic treatment in patients treated with Invisalign (R) clear aligners (Align Technology Inc., Tempe, AZ, USA). A group of 376 patients were treated with Invisalign (R) orthodontic clear aligners in association with an OrthoPulse (R) . The OrthoPulse (R) was prescribed for 10 min a day for the entire duration of the orthodontic treatment. The OrthoPulse (R) App remotely tracked the percentage compliance of each patient. The number of aligners planned with the ClinCheck software at the beginning of the treatment and the number of total aligners (including the adjunctive aligners) used to finish the treatment were then considered. After applying inclusion/exclusion criteria, a total of 40 patients remained in the study and were compared with a control group of 40 patients with the same characteristics as the study group. A statistical analysis was carried out to investigate whether using OrthoPulse (R) led to a statistical reduction in the number of adjunctive aligners, thus leading to a more accurate prediction of the treatment. The statistical analysis showed that patients who used OrthoPulse (R) needed fewer finishing aligners and a greater predictability of the treatment was obtained. In fact, in the treated group the average number of additional aligners represented 66.5% of the initial aligners, whereas in the control group 103.4% of the initially planned aligners were needed. In conclusion, in patients treated with clear aligners, OrthoPulse (R) would appear to increase the predictability of orthodontic treatment with clear aligners, thus reducing the number of finishing phase requirements
Therapeutic target-site variability in α1-antitrypsin characterized at high resolution
The intrinsic propensity of [alpha]1-antitrypsin to undergo conformational transitions from its metastable native state to hyperstable forms provides a motive force for its antiprotease function. However, aberrant conformational change can also occur via an intermolecular linkage that results in polymerization. This has both loss-of-function and gain-of-function effects that lead to deficiency of the protein in human circulation, emphysema and hepatic cirrhosis. One of the most promising therapeutic strategies being developed to treat this disease targets small molecules to an allosteric site in the [alpha]1-antitrypsin molecule. Partial filling of this site impedes polymerization without abolishing function. Drug development can be improved by optimizing data on the structure and dynamics of this site. A new 1.8 Å resolution structure of [alpha]1-antitrypsin demonstrates structural variability within this site, with associated fluctuations in its upper and lower entrance grooves and ligand-binding characteristics around the innermost stable enclosed hydrophobic recess. These data will allow a broader selection of chemotypes and derivatives to be tested in silico and in vitro when screening and developing compounds to modulate conformational change to block the pathological mechanism while preserving function
- …