11 research outputs found

    Differences in root functions during long-term drought adaptation:comparison of active gene sets of two wheat genotypes

    No full text
    In an attempt to shed light on the role of root systems in differential responses of wheat genotypes to long-term water limitation, transcriptional differences between two wheat genotypes (Triticum aestivum L., cv. Plainsman V and landrace Kobomugi) were identified during adaptation to moderate water stress at the tillering stage. Differences in organ sizes, water-use efficiency and seed production were detected in plants grown in soil, and root functions were characterised by expression profiling. The molecular genetic background of the behaviour of the two genotypes during this stress was revealed using a cDNA macroarray for transcript profiling of the roots. During a 4-week period of moderate water deficit, a set of up-regulated genes displaying transiently increased expression was identified in young plantlets, mostly in the second week in the roots of Kobomugi, while transcript levels remained constantly high in roots of Plainsman V. These genes encode proteins with various functions, such as transport, protein metabolism, osmoprotectant biosynthesis, cell wall biogenesis and detoxification, and also regulatory proteins. Oxidoreductases, peroxidases and cell wall-related genes were induced significantly only in Plainsman V, while induction of stress- and defence-related genes was more pronounced in Kobomugi. Real-time qPCR analysis of selected members of the glutathione S-transferase gene family revealed differences in regulation of family members in the two genotypes and confirmed the macroarray results. The TaGSTZ gene was stress-activated only in the roots of Kobomugi

    Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection

    Get PDF
    When plants are exposed to stressful environmental conditions, the production of Reactive Oxygen Species (ROS) increases and can cause significant damage to the cells. Antioxidant defenses, which can detoxify ROS, are present in plants. A major hydrogen peroxide detoxifying system in plant cells is the ascorbate-glutathione cycle, in which, ascorbate peroxidase (APX) enzymes play a key role catalyzing the conversion of H2O2 into H2O, using ascorbate as a specific electron donor. Different APX isoforms are present in distinct subcellular compartments, such as chloroplasts, mitochondria, peroxisome, and cytosol. The expression of APX genes is regulated in response to biotic and abiotic stresses as well as during plant development. The APX responses are directly involved in the protection of plant cells against adverse environmental conditions. Furthermore, mutant plants APX genes showed alterations in growth, physiology and antioxidant metabolism revealing those enzymes involvement in the normal plant development
    corecore